高分辨率紫外可見成像光譜儀地面定標技術研究
本文關鍵詞:高分辨率紫外可見成像光譜儀地面定標技術研究 出處:《中國科學院大學(中國科學院國家空間科學中心)》2017年博士論文 論文類型:學位論文
更多相關文章: 紫外可見高分辨率成像光譜儀 地面定標 光譜定標 視場測量 輻亮度定標 偏振特性測試 BRDF測量
【摘要】:伴隨空間光學遙感技術的不斷進步,為了滿足星載光學探測儀的發(fā)展和科研的需要,在近幾十年中高分辨率星載成像光譜儀對探測精度要求在逐漸提高,儀器的設計越來越完善,其功能和性能指標也在不斷提升?臻g光學遙感載荷高精度探測的實現(xiàn)不僅取決于儀器本身的性能也取決于其探測數(shù)據(jù)的定量化反演的水平,即通過原始探測數(shù)據(jù)反演出目標氣體含量的水平。而在探測數(shù)據(jù)定量化反演的過程中,地面定標是不可缺少的技術之一,高精度的成像光學遙感儀器的快速發(fā)展帶來的是地面測試和定標技術的復雜化,因此針對星載光學成像光譜儀建立一套完整的地面測試系統(tǒng)是迫切需要的。紫外可見高分辨率成像光譜儀采用高光譜成像技術,是一臺工作波段為300nm-500nm的雙通道成像光譜儀,為開展相應的高精度地面定標技術研究,分別圍繞五個方面展開定標了工作。本文第一章首先介紹了近些年來國內外星載光學遙感儀器的發(fā)展和國內外地面定標技術的現(xiàn)狀,同時介紹了紫外可見高分辨率成像光譜儀的組成及相應的工作原理,并針對該載荷的性能指標確立了相應的定標工作。第二章研究了紫外可見高分辨率成像光譜儀的光譜定標技術,使用低壓汞燈作為定標光源,研制了實驗裝置對載荷進行波長定標,波長定標結果表明,紫外可見高分辨率成像光譜儀可見通道的波長范圍為377-517 nm,且波長定標總的不確定度為0.02798nm。為了準確描述儀器狹縫函數(shù),針對紫外可見高分辨率成像光譜儀寬波段探測、大視場掃描、空間及光譜分辨率高的特點,空間中心自主研制了狹縫函數(shù)測量儀,狹縫函數(shù)測量儀能一次性輸出多條分布均勻的窄帶譜線,并利用該特點準確測描述了載荷狹縫函數(shù),結果表明,輸出譜線較好的符合高斯分布規(guī)律,由于存在光譜彎曲,導致邊緣視場分辨能力略低于星下點視場光譜分辨能力,可見通道分辨率在0.42nm-0.50nm之間。第三章研究了紫外可見高分辨率成像光譜儀的視場及空間響應函數(shù)測量。利用狹縫函數(shù)測量儀定標了載荷視場并且描述了其空間響應函數(shù),定標結果表明紫外可見高分辨率成像光譜儀的總視場為112.5°,與空間響應函數(shù)近似符合高斯分布,儀器跨軌飛行方向的星下點空間分辨率在1.36°-1.62°之間,在邊緣視場載荷空間分辨率在1.48°-1.81°之間。第四章研究了紫外可見高分辨率成像光譜儀輻亮度定標的方法。首先研究了輻亮度定標的原理和方法,然后使用漫反射板法并使用相應的實驗裝置對紫外可見高分辨率成像光譜儀的輻亮度響應度定標。定標時選擇f18輻照度標準燈作為光源,結合已知半球反射率和brdf的標準漫反射建立了實驗平臺,數(shù)據(jù)處理分別采用兩種不同的算法——距離法和brdf法來計算輻亮度響應度。實驗結果表明,利用距離法計算得到的漫反射板法輻亮度定標的相對不確定度在3.2%-4.9%之間,由于漫反射板的非標準朗伯反射面特性,兩種算法得到的輻亮度響應度相差5.3%。第五章研究了紫外可見高分辨率成像光譜儀的雙巴比涅退偏器的退偏性能及整機偏振靈敏度測試方法。本章首先從穆勒矩陣法和波動光學法兩個不同的角度分析了雙巴比涅退偏器的工作原理并推導了退偏度,分別對雙巴比涅退偏器的退偏性能及紫外可見高分辨率成像光譜儀的偏振靈敏度測量。測試結果表明,雙巴比涅退偏器在±15°的入射角范圍內具有較好的退偏性能,且退偏度優(yōu)于99%,退偏器退偏特性測試的不確定度為2.9‰,紫外可見高分辨率成像光譜儀整機偏振靈敏度測量不確定為2.1%。第六章研究了星上漫反射板雙向反射分布函數(shù)的測試方法,并對紫外可見高分辨率成像光譜儀星上漫反射板的brdf測量。首先研究了漫反射雙向反射分布函數(shù)的定義并探討了brdf的測試方法,分別測試了漫反射鋁板和聚四氟乙烯的雙向反射分布函數(shù),并將測試結果進行對比。實驗結果表明,鋁板的雙向反射分布函數(shù)在大散射角時的變化比較大,在400nm處的brdf約為50%,聚四氟乙烯為材料的漫反射板的雙向反射分布函數(shù)在大散射角±56°之間變化約為10%,總的測試不確定度約為4.1%。
[Abstract]:With the development of space optical remote sensing technology, in order to meet the development of spaceborne optical detector and research need, in recent decades the high resolution spaceborne imaging spectrometer for the detection accuracy requirements gradually increased, the instrument design more and more perfect, its function and performance index is also rising. The realization of high-precision detection of space optical remote sensing load depends not only on the performance of the instrument itself, but also on the level of the quantitative inversion of the detected data, that is, the target gas content level is retrieved through the original detection data. In the process of quantitative detection data inversion, ground calibration is one of the necessary technology, bring rapid development of optical imaging remote sensing instrument with high precision is the complexity of the ground testing and calibration, so for spaceborne optical imaging spectrometer to establish a complete set of ground testing system is urgently needed. The ultraviolet visible high resolution imaging spectrometer adopts hyperspectral imaging technology. It is a dual channel imaging spectrometer with a working band of 300nm-500nm. In order to carry out the corresponding high-precision ground calibration technology, the calibration work is carried out in five aspects. The first chapter introduces the recent domestic space borne optical remote sensing instrument development and the domestic and foreign status of ground calibration technology, and introduces the UV visible high resolution imaging spectrometer and its corresponding working principle, and establishes the corresponding calibration work for the performance of the load. The second chapter studies the UV high resolution imaging spectrometer calibration technology, the use of low pressure mercury lamp as the calibration source, an experimental device is developed for wavelength calibration of load, wavelength calibration results show that the UV visible imaging spectrometer with high resolution visible channel wavelength range of 377-517 nm, and the wavelength calibration determine the total degree of 0.02798nm. In order to accurately describe the instrument slit function, according to the characteristics of broad band ultraviolet visible spectroscopy and high resolution imaging detection, scanning space and large field, high spectral resolution, spatial center independently developed a slit function measuring instrument, slit function measuring instrument can output multiple uniform narrowband spectral line, and use the characteristics accurately described the results show that the load of slit function, in line with the Gauss distribution law of output line better, due to the presence of spectral bending, lead to edge resolution is slightly lower than the field of view FOV spectral resolution, visible channel resolution between 0.42nm-0.50nm. The third chapter studies the field of view and the measurement of the spatial response function of the UV visible high resolution imaging spectrometer. Calibration of load field and describes the spatial response function of the slit function measuring instrument, the calibration results show that the total field of UV visible imaging spectrometer with high resolution is 112.5 degrees, and the spatial response function approximation with Gauss distribution, instrument cross track flight direction of ground spatial resolution between 1.36 DEG -1.62 DEG, on the edge of the field load spatial resolution between 1.48 DEG -1.81 deg. In the fourth chapter, the method of radiance calibration for UV visible high resolution imaging spectrometer is studied. First, the principle and method of radiometric calibration is studied. Then, the diffuse reflectance plate method and the corresponding experimental device are used to calibrate the radiance response of the ultraviolet visible high resolution imaging spectrometer. The F18 irradiance standard lamp is selected as the light source when calibrating. Combined with the known hemisphere reflectivity and the standard diffuse reflection of BRDF, the experimental platform is established. Data processing adopts two different algorithms -- distance method and BRDF method to calculate the radiance response. The experimental results show that the relative uncertainty of the radiometric calibration obtained from the distance method is between 3.2%-4.9%. Due to the characteristic of the non-standard Lambert reflector of the diffuse reflector, the difference of radiance response between the two algorithms is 5.3%. The fifth chapter studies the double Babinet UV visible high resolution imaging spectrometer depolarization depolarization and the polarization sensitivity testing method. This chapter starts from two different angles of the Muller matrix method and wave optics method to analyze the working principle of double back polarizer Babinet and derived depolarization, polarization sensitivity measurement of double Babinet depolarization depolarization properties and UV visible high resolution imaging spectrometer. The test results show that the double Babinet depolarizer in the incident - 15 degree angle range with partial depolarization performance better, and the depolarization ratio is less than 99%, depolarizer depolarization test uncertainty degree is 2.9 per thousand, UV visible high resolution imaging spectrometer polarization sensitivity measurement uncertainty is 2.1%. In the sixth chapter, the test method of bidirectional reflectance distribution function on the diffuse reflector is studied, and the BRDF measurement of the ultraviolet visible high resolution imaging spectrometer is done. First, the definition of diffuse reflectance bidirectional reflectance distribution function is studied, and the testing method of BRDF is discussed. The bidirectional reflectance distribution function of diffuse reflection aluminum plate and polytetrafluoroethylene is tested respectively, and the test results are compared. The experimental results show that the change of BRDF at large scattering angles when the plate is relatively large, in the 400nm BRDF at about 50%, PTFE bidirectional reflectance diffuse plate material distribution function between the large scattering angle + 56 degrees change is about 10%, the total test uncertainty is about 4.1%.
【學位授予單位】:中國科學院大學(中國科學院國家空間科學中心)
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TH744.1
【參考文獻】
相關期刊論文 前10條
1 毛靖華;王詠梅;石恩濤;張仲謀;江芳;;星載高光譜成像光譜儀狹縫函數(shù)測試方法的研究[J];光譜學與光譜分析;2017年04期
2 李明;宗肖穎;;定標漫反射板實驗室系統(tǒng)級BRDF測量方法[J];紅外與激光工程;2017年01期
3 尹祿;盧禹先;巴音賀希格;楊晉;崔繼承;;中階梯光柵光譜儀的多譜線聯(lián)合在線定標方法[J];光學學報;2016年09期
4 王宏博;胡秀清;張璐;張崇丙;任百川;黃小仙;危峻;;光柵色散型成像光譜儀的偏振校正方法研究[J];光學學報;2016年08期
5 趙敏杰;司福祺;陸亦懷;汪世美;江宇;周海金;劉文清;;星載石英漫反射板雙向反射分布函數(shù)實驗測量研究[J];光譜學與光譜分析;2016年05期
6 趙艷華;董建婷;張秀茜;王斌;;漫反射板全光路全視場全口徑在軌輻射定標技術[J];航天返回與遙感;2016年02期
7 撖們們;;一種高光譜成像光譜儀光譜定標方法[J];長春工業(yè)大學學報;2015年06期
8 張艷娜;鄭小兵;李新;劉恩超;李文偉;;基于可調諧激光器的太陽光譜輻照度儀定標方法[J];紅外與激光工程;2014年08期
9 王磊;;一種新型空間偽退偏器的設計與研究[J];光學技術;2014年03期
10 趙敏杰;司福祺;陸亦懷;汪世美;江宇;周海金;劉文清;;星載大氣痕量氣體差分吸收光譜儀定標系統(tǒng)中鋁漫反射板實驗測量研究[J];物理學報;2013年24期
相關博士學位論文 前7條
1 王宏博;推掃式可見光/近紅外成像光譜儀的在軌光譜定標與偏振校正技術研究[D];中國科學院研究生院(上海技術物理研究所);2016年
2 孫景旭;大口徑光學有效載荷輻射定標技術研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2015年
3 張晶;用于中層大氣臨邊探測的紫外全景成像儀研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2014年
4 任樹鋒;晶體雙折射退偏器的光波疊加分析方法與優(yōu)化設計[D];曲阜師范大學;2014年
5 趙發(fā)財;空間紫外大氣遙感成像光譜儀偏振校正研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2012年
6 薛慶生;用于空間大氣遙感的臨邊成像光譜儀研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2010年
7 賈輝;星載太陽紫外光譜監(jiān)視器輻射定標的研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2004年
,本文編號:1339528
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1339528.html