天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

一種新型D-檸檬烯納米系統(tǒng)的制備以及其抗菌活性的測定

發(fā)布時(shí)間:2017-10-25 14:39

  本文關(guān)鍵詞:一種新型D-檸檬烯納米系統(tǒng)的制備以及其抗菌活性的測定


  更多相關(guān)文章: 有機(jī)凝膠 以有機(jī)凝膠為基本成分的納米乳 D-檸檬烯 ε-多熔素 抗菌活性 納米乳


【摘要】:D-檸檬烯,4-異丙烯基-1-甲基環(huán)丙烯,屬于天然單萜類物質(zhì),該物質(zhì)大量存在于柑橘類精油中,并在其中被發(fā)現(xiàn)。D-檸檬烯對于大部分的革蘭氏陰性菌和革蘭氏陽性菌都表現(xiàn)出了強(qiáng)大的抑制活性,該物質(zhì)的安全性被美國聯(lián)邦法規(guī)(Code of Federal Regulations)所認(rèn)可。在自然界中,D-檸檬酸是一種有著令人愉快的柑橘氣味的透明液體。該物質(zhì)優(yōu)良的特性使得其在食品,化妝品和制藥行業(yè)被廣泛用作天然的抗菌劑。然而,D-檸檬烯是一種疏水性化合物(油性),這很大程度上限制其在富水表面的溶解性和作用,從而導(dǎo)致食源性致病菌的生長。除此之外,D-檸檬烯在自然條件下的氧化也導(dǎo)致其在儲(chǔ)存方面有一定的限制。在自然條件先,D-檸檬烯會(huì)被氧化稱為醇類和環(huán)氧類物質(zhì),從而導(dǎo)致其的損失。為了克服這些缺點(diǎn),將D-檸檬烯封裝到一個(gè)最佳的納米分散輸送系統(tǒng)會(huì)是一個(gè)很好的選擇,這樣也有利于增加其在水中的溶解性,穩(wěn)定性和抗菌效率。在外,將其與其他一些強(qiáng)大的抗菌藥物結(jié)合會(huì)非常有利于調(diào)高其在食品中的抗菌能力。當(dāng)前研究的目的是希望能夠?qū)-檸檬烯封裝到一種新型的納米系統(tǒng)內(nèi)以克服上面提到的局限性。本課題制備了一系列D-檸檬烯納米乳并對其進(jìn)行電子顯微鏡、紅外光譜、X射線衍射、臨界凝膠濃度、感官試驗(yàn)測定。通過優(yōu)化表面活性劑、有機(jī)凝膠因子的種類和用量以及高壓均質(zhì)法的參數(shù),在5%硬脂酸、10%吐溫80、30MPa、10循環(huán)的條件下,得到的納米乳最小液滴平均直徑約為112 nm,并且在4-28℃條件下穩(wěn)定存儲(chǔ)兩周。之后用肉湯稀釋實(shí)驗(yàn)對其進(jìn)行了四種食源性致病菌(大腸桿菌、枯草芽孢桿菌、金黃色葡萄球菌、釀酒酵母)的抑制效果,并用掃描電子顯微鏡和細(xì)胞釋放成分分析其作用機(jī)理。通過D-檸檬烯單體與其不同大小納米乳進(jìn)行對照實(shí)驗(yàn)研究不同的傳送系統(tǒng)對抑菌活性的影響。掃描電子顯微鏡和細(xì)胞釋放成分表明納米乳顆?梢云茐募(xì)胞膜的完整性,最小抑菌濃度表明D-檸檬烯的納米乳有助于增加其抑菌效果。最終確定以5%單硬脂酸甘油酯、10%吐溫80、100MPa、10循環(huán)制備的納米乳的最小液滴平均直徑約為36nm并有良好的穩(wěn)定性。通過智能組合和納米技術(shù),將ε-多聚賴氨酸融于D-檸檬酸納米乳中,以棋盤法檢測D-檸檬酸和ε-多聚賴氨酸的共同使用對其抑菌活性的影響,并與D-檸檬酸對比。并采用高壓高壓均質(zhì)作用,研究不同含量的ε-多聚賴氨酸對納米乳直徑的影響。通過掃描電子顯微鏡和細(xì)胞釋放成分分析研究D-檸檬酸和ε-多聚賴氨酸共同使用的抑菌機(jī)理。結(jié)果表明,D-檸檬酸和ε-多聚賴氨酸的共同作用可以加速細(xì)胞凋亡,可有效降低最小抑菌濃度。
【關(guān)鍵詞】:有機(jī)凝膠 以有機(jī)凝膠為基本成分的納米乳 D-檸檬烯 ε-多熔素 抗菌活性 納米乳
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TB383.1
【目錄】:
  • ABSTRACT7-12
  • 摘要12-15
  • ABBREVIATIONS15-29
  • CHALPTER 1:LITERATURE REVIEW29-73
  • 1.1 INTRODUCTION29-33
  • 1.2 DEFINITION OF D-LIMONENE33-40
  • 1.2.1 Physicochemical Proprieties33-34
  • 1.2.2 Biosynthesis of D-Limonene34-35
  • 1.2.3 Biological Activities of D-Limonene35-38
  • 1.2.3.1 Anticancer Activity35-36
  • 1.2.3.2 Antidiabetic Activity36
  • 1.2.3.3 Antioxidant Activity36-37
  • 1.2.3.4 Antimicrobial Activity37-38
  • 1.2.4 Mechanism of Antimicrobial Action38-39
  • 1.2.5 Applications of D-Limonene39-40
  • 1.3 INTRODUCTION OF GELS40-46
  • 1.3.1 Definition of Organogels40-41
  • 1.3.2 Organogelators41-43
  • 1.3.2.1 Classification of the Organogelators41-42
  • 1.3.2.2 Characterization of Organogels42-43
  • 1.3.3 Proprieties of Organogels43-45
  • 1.3.3.1 Biocompatibility43-44
  • 1.3.3.2 Chirality44
  • 1.3.3.3 Non-Birefringence44
  • 1.3.3.4 Optical Clarity44
  • 1.3.3.5 Thermo-Stability44
  • 1.3.3.6 Thermo-Reversibility44-45
  • 1.3.3.7 Viscoelasticity45
  • 1.3.4 Applications of Organogels in Food Industry45-46
  • 1.4 INTRODUCTION AND DEFINITION OF NANOEMULSIONS46-58
  • 1.4.1 Formation of Nanoemulsions47-51
  • 1.4.1.1 Low Energy Methods47-49
  • 1.4.1.1.1 Spontaneous Emulsification47-48
  • 1.4.1.1.2 Catastrophic Phase Inversion48-49
  • 1.4.1.2 High-Energy Methods49-51
  • 1.4.1.2.1 Homogenization by Sonication49
  • 1.4.1.2.2 Microfluidizer49-50
  • 1.4.1.2.3 High Pressure Homogenization50-51
  • 1.4.2 Characterization of Nanoemulsions51-53
  • 1.4.2.1 Dynamic Light Scattering52
  • 1.4.2.2 Scanning Electron Microscopy52
  • 1.4.2.3 Transmission Electron Microscopy52
  • 1.4.2.4 Zeta Potential52-53
  • 1.4.3 Stability of Nanoemulsions53-55
  • 1.4.3.1 Ostwald Ripening53-54
  • 1.4.3.2 Coalescence and Flocculation54
  • 1.4.3.3 Creaming54-55
  • 1.4.4 Application of Nanoemulsions in Food Industry55-58
  • 1.4.4.1 Antimicrobial Systems55-57
  • 1.4.4.2 Transdermal Delivery Systems57
  • 1.4.4.3 Bioavailability57-58
  • 1.5 COMBINATION OF ESSENTIAL OILS AND THEIR BIOACTIVE COMPOUNDS58-61
  • 1.5.1 Combination Test Method59-61
  • 1.6 THE SCOPE OF THETHESIS61
  • REFERENCES61-73
  • CHAPTER 2:PREPARATION AND CHARACTERIZATION OF D-LIMONENE ORGANOGEL73-85
  • 2.1 BACKGROUND73-74
  • 2.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS74-75
  • 2.2.1 Experimental Materials74
  • 2.2.2 Experimental Equipments74-75
  • 2.3 PREPARATION METHODS75-76
  • 2.3.1 Determination of the Critical Gelation Concentration(CGC)75
  • 2.3.2 Preparation of D-Limonene Organogel75
  • 2.3.3 Characterization of D-Limonene Organogel75-76
  • 2.3.3.1 The Microscopic Analysis75-76
  • 2.3.3.2 FTIR-Analysis76
  • 2.3.3.3 XRD Measuements76
  • 2.4 RESULTS AND DISCUSSIONS76-82
  • 2.4.1 Determination of the Critical Gelation Concentration76-77
  • 2.4.2 D-Limonene Organogel Preparation77-78
  • 2.4.3 D-Limonene Organogel Characterization78-82
  • 2.4.3.1 Organoleptic Test78
  • 2.4.3.2 Microscopic Analysis78-79
  • 2.4.3.3 XRD Measurement79-81
  • 2.4.3.4 FTIR Measurements81-82
  • CONCLUSION82
  • REFERENCES82-85
  • CHAPTER 3:PRODUCTION AND STABILITY STUDIES OF D-LIMONENEORGANOGEL-BASED NANOEMULSION FORMED BY HIGH PRESSUREHOMOGENIZATION METHOD85-107
  • 3.1 BACKGROUND85-86
  • 3.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS86-87
  • 3.2.1 Experimental Materials86-87
  • 3.2.2 Experimental Equipment87
  • 3.3 PREPARATION METHODS87-88
  • 3.3.1 Preparation of D-Limonene Organogel-Based Nanoemulsion87-88
  • 3.3.2 Particle Size Measurement88
  • 3.3.3 Turbidity Measurements88
  • 3.3.4 Storage Stability88
  • 3.4 RESULTS AND DISCUSSIONS88-103
  • 3.4.1 Effects of Organogelators on the Formation of D-Limonene Organogel-BasedNanoemulsion88-91
  • 3.4.2 Effects of Surfactants Type and Concentration on the Formation of D-LimoneneOrganogel-Based Nanoemulsion91-96
  • 3.4.2.1 Effects of the Type of Surfactant on the Formation of the Oil Droplets91-94
  • 3.4.2.2 Impact of the Surfactant Amount on the Particle Size Diameters Formation94-96
  • 3.4.3 Impacts of the Homogenization Pressure and Cycling Number on the D-Limonene Organogel-Based Nanoemulsion96-99
  • 3.4.4 Storage Stability of D-Limonene Organogel-Based Nanoemulsion99-103
  • CONCLUSION103
  • REFERENCES103-107
  • CHAPTER 4:IMPROVING THE ANTIMICROBIAL ACTIVITY OF D-LIMONENE BY ITS INCORPORATION INTO AN ORGANOGEL-BASEDNANOEMULSION107-123
  • 4.1 BACKGROUND107-109
  • 4.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS109
  • 4.2.1 Experimental Materials109
  • 4.2.2 Experimental Equipments109
  • 4.3 PREPARATION OF D-LIMONENE ORGANOGEL AND D-LIMONENE ORGANOGEL-BASED NANOEMULSION109-110
  • 4.4 PARTICLE SIZES MEASUREMENTS110
  • 4.5 TURBIDITY MEASUREMENTS110
  • 4.6 ANTIMICROBIAL ACTIVITY110-111
  • 4.6.1 Microbial Strains and Growth Cultures110-111
  • 4.6.2 Determination of MICs Values111
  • 4.7 MECHANISM OF THE ANTIMICROBIAL ACTION111-112
  • 4.7.1 Scanning Electrons Micrographs111-112
  • 4.7.2 Cells Constituents Release Determination112
  • 4.8 RESULTS AND DISCUSSIONS112-120
  • 4.8.1 Preparation and Characterization of D-Limonene Organogel-BasedNanoemulsion112-115
  • 4.8.2 The Effect of the Organogel-Based Nanoemulsion on the AntimicrobialEfficiency of D-Limonene115-117
  • 4.8.3 Mechanism of the Antimicrobial Action117-120
  • 4.8.3.1 Scanning Electrons Analysis117-119
  • 4.8.3.2 Determination of the Cells Constituent Release119-120
  • CONCLUSION120-121
  • REFERENCES121-123
  • CHAPTER 5:IN VITRO ANTIMICROBIAL EFFICIENCY OF ε-POLYLYSINE AND D-LIMONENE AND THEIR COMBINATION AGAINSTFOUR FOOD-BORNE PATHOGENS123-131
  • 5.1 BACKGROUND123
  • 5.2 XPERIMENTAL AND EQUIPMENTS123-124
  • 5.2.1 Experimental Materials124
  • 5.2.2 Experimental Eq山pments124
  • 5.3 ANTIMICROBIAL ACTIVITY124-126
  • 5.3.1 MIC Measurement of D-Limonene and ε-Polylysine124-125
  • 5.3.2 Synergism Testing of ε-Polylysine and D-Limonene125-126
  • 5.4 RESULTS AND DISCUSSIONS126-128
  • 5.4.1 Antimicrobial Efficacy of ε-Polylysine and D-Limonene126-127
  • 5.4.2 Synergism Testing of ε-Polylysine and D-Limonene127-128
  • CONCLUSION128
  • REFERENCES128-131
  • CHAPTER 6:PREPARATION OF D-LIMONENE NANOEMULSION WITHTHE INCLUSION OF ε-POLYLYSINE AND INVESTIGATION OF ITSANTIMICROBIAL ACTIVITY AND MECHANISM OF ACTION131-149
  • 6.1 BACKGROUND131-133
  • 6.2 EXPERIMENTAL MATERIALS AND EQUIPMENTS133
  • 6.2.1 Experimental Materials133
  • 6.2.2 Experimental Apparatus and Equipments133
  • 6.3 PREPARATION METHOD133-136
  • 6.3.1 Preparation of D-Limonene NanoemuIsion133-134
  • 6.3.2 Preparation of D-Limonene Nanoemulsion with the Inclusion Of ε-Polylysine134
  • 6.3.3 Particle Size Measurement134-135
  • 6.3.4 The Meament of Turbidity135
  • 6.3.5 Antimicrobial Efficiency135-136
  • 6.3.5.1 Determination of the MICs135
  • 6.3.5.2 Scanning Electron Microscopy135-136
  • 6.3.5.3 Cells Constituent Release Determination136
  • 6.4 RESULTS AND DISCUSSIONS136-145
  • 6.4.1 D-limonene Nanoemulsion Preparation136-137
  • 6.4.2 The Impact of ε-Polylysine on the D-Limonene Nanoemulsion137-139
  • 6.4.3 Antimicrobial Efficiency of D-Limonene Nanoemulsion with the Inclusion of ε-Polylysine and their Comparative Study139-141
  • 6.4.4 Mechanism of D-Limonene Nanoemulsion with the Inclusion of ε-Polylysine141-145
  • 6.4.4.1 SEM Visualization141-144
  • 6.4.4.2 Cell Constituent Release Determination144-145
  • CONCLUSION145
  • REFERENCES145-149
  • CHAPTER 7:CONCLUSION149-151
  • LIST OF PUBLICATIONS151
  • Publications in Process151-153
  • ACKNOWLEDGMENT153-155
  • Mohamed Reda Zahi (Author)155-157
  • Doctor Professor Pingyu Wan (First Supervisor)157-159
  • Doctor Professor Qipeng Yuan (Second Supervisor)159-160
  • 博士研究生學(xué)位論文笞辯委員會(huì)決議書160-161


本文編號:1094182

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1094182.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b755d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com