成型方法對SCF微孔發(fā)泡制品泡孔結(jié)構(gòu)及力學(xué)性能的影響
[Abstract]:Nowadays, the society is facing the global energy crisis and environmental pollution. In supercritical fluid (Supercritical Fluids,SCF) microcellular foaming materials, the existence of a large number of microbubble pores can reduce the raw materials and energy consumption of the products, at the same time, some properties of microcellular foamed products are more excellent. With its unique advantages, microcellular foaming technology has become a research hotspot, but it also faces many problems and challenges. How to fabricate microporous structures with high density and regular arrangement to obtain better mechanical properties is an urgent problem to be solved. In this paper, SCF microcellular foaming products were prepared by conventional foaming, high pressure foaming and injection pressure foaming, respectively. The effects of different molding methods and different processing conditions on the foam structure of the products were investigated. The main work is as follows: (1) designing and manufacturing multi-function test mould suitable for three different molding methods. The mold flow analysis software Moldflow was used to simulate the filling process of thermoplastic injection molding and microcellular foaming injection molding of polystyrene (PS), and the molding properties of mould and material PS were evaluated. The results show that the compression frame with spring structure and the movable cavity plate are the key to the design of the experimental die. Compared with thermoplastic injection molding, the filling time of microcellular foaming injection molding is shorter, the temperature of melt front is lower, the instantaneous cavity pressure of filling is lower and the distribution of SCF in the cavity is more uniform. (2) the content of SCF is studied. Effect of screw back pressure and pre-filling on foam structure of conventional foamed products. The results show that the bubble pores in the vertical flow direction of conventional foamed products are circular or elliptical, while those along the flow direction are long. The arrangement of the bubble pore retains obvious spring flow trace, and the shape, size and density of the bubble pore along the flow direction are obviously uneven. (3) the influence of the pressure holding pressure and the pressure holding time on the bubble pore structure of the high-pressure foaming products is studied. The results show that when the pressure holding pressure is 600barand the holding time is 5s, the bubble density is the highest (6.6 脳 105cells/cm3) and the bubble size is the smallest (45 渭 m);). Under the optimized process conditions, the foam pores perpendicular to the flow direction and along the section along the flow direction are circular. (4) the effects of compression pressure and compression time on the foam structure of injection-pressure foamed products are studied. The results show that when the compression pressure is 400barand the compression time is 5s, the bubble density is the highest (4.3 脳 106cells/cm3) and the bubble size is the smallest (10 渭 m);). Under the optimized technological conditions, the foam pores perpendicular to the flow direction and along the flow direction are circular. (5) in the conventional foaming, The cavity pressure and mechanical properties of high pressure foaming and injection pressure foaming products were compared and analyzed on the basis of different foam pore structures. The results show that the mechanical properties of the products are the worst when the pressure is low in the conventional foaming process, and the secondary foam pores are formed in the high pressure foaming process, and the mechanical properties are higher. However, the pressure is the highest in the foaming process of injection pressure, and the mechanical properties of the products can be effectively extracted by the formation of secondary foam pores.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ328
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魯?shù)缕?管蓉,劉劍洪;微孔發(fā)泡高分子材料[J];高分子材料科學(xué)與工程;2002年04期
2 方荃,何榮軍;高分子材料的微孔發(fā)泡方法[J];膠體與聚合物;2003年04期
3 吳曉丹,彭玉成,國明成;微孔發(fā)泡過程的氣泡成長動力學(xué)模型[J];輕工機械;2005年02期
4 李應(yīng)林;向幫龍;蔣亞靜;肖兆新;管蓉;;微孔發(fā)泡成核理論新進(jìn)展[J];現(xiàn)代塑料加工應(yīng)用;2006年06期
5 ;關(guān)于召開“2008微孔發(fā)泡和低發(fā)泡塑料成型技術(shù)研討會”的通知[J];塑料科技;2008年05期
6 朱茂電;;微孔發(fā)泡材料制備技術(shù)研究進(jìn)展[J];化學(xué)工業(yè)與工程;2010年04期
7 李越;劉春彤;;微孔發(fā)泡擠出技術(shù)制備光纜填充繩[J];現(xiàn)代傳輸;2013年02期
8 祝詩洋;曲敏杰;鄭來久;何玲玲;;超臨界CO_2微孔發(fā)泡材料研究進(jìn)展[J];現(xiàn)代塑料加工應(yīng)用;2013年05期
9 高長云,周南橋,彭響方;微孔發(fā)泡過程中聚合物/超臨界CO_2均相體系形成的研究[J];工程塑料應(yīng)用;2003年10期
10 鐘桂龍;;新型生物降解材料聚乳酸的微孔發(fā)泡技術(shù)研究進(jìn)展[J];化工新型材料;2009年04期
相關(guān)會議論文 前10條
1 楊勇;張好斌;王繼文;盧朝輝;鄭文革;;聚碳酸酯/聚苯乙烯微孔發(fā)泡行為的研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
2 黎紅;姜修磊;劉攀;許志美;趙玲;;超臨界CO_2中聚丙烯微孔發(fā)泡的研究[A];上海市化學(xué)化工學(xué)會2006年度學(xué)術(shù)年會論文摘要集[C];2006年
3 向幫龍;李應(yīng)林;魯?shù)缕?宋功武;管蓉;;PET微孔發(fā)泡中氣體擴散行為的研究[A];2005年全國高分子學(xué)術(shù)論文報告會論文摘要集[C];2005年
4 王建華;梁書恩;田春蓉;周秋明;陳曉媛;;聚氨酯泡沫塑料泡孔結(jié)構(gòu)與力學(xué)性能關(guān)系[A];中國工程物理研究院科技年報(2005)[C];2005年
5 柯釗;陳浩;查尚文;杜平高;郭普生;管蓉;;加工參數(shù)對增塑微孔發(fā)泡PC片材的力學(xué)性能的影響[A];2012年全國高分子材料科學(xué)與工程研討會學(xué)術(shù)論文集(下冊)[C];2012年
6 辛振祥;張振秀;張保生;;聚丙烯/廢舊輪胎膠粉共混物的微孔發(fā)泡研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
7 李文光;;聚丙烯微孔發(fā)泡材料制備技術(shù)中的難點及解決的途徑[A];2007年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2007年
8 管蓉;李應(yīng)林;肖兆新;劉娟;;模壓法微孔發(fā)泡PET和PC片材的制備及性能[A];2007年全國高分子學(xué)術(shù)論文報告會論文摘要集(上冊)[C];2007年
9 蔣亞靜;肖兆新;管蓉;;加工條件對微孔PC泡孔結(jié)構(gòu)的影響[A];2005年全國高分子學(xué)術(shù)論文報告會論文摘要集[C];2005年
10 閻業(yè)海;黃兆閣;周瓊;吳其曄;葉勝友;邵明杰;;擠出微發(fā)泡R-PVC發(fā)泡劑和泡孔調(diào)節(jié)劑的優(yōu)選[A];’2000中國工程塑料加工應(yīng)用技術(shù)研討會論文集[C];2000年
相關(guān)重要報紙文章 前1條
1 沈陽亨通 李越 劉春彤 李巖;微孔發(fā)泡填充繩生產(chǎn)前景看好[N];通信產(chǎn)業(yè)報;2013年
相關(guān)博士學(xué)位論文 前6條
1 董桂偉;微孔發(fā)泡注塑成型技術(shù)及其產(chǎn)品泡孔結(jié)構(gòu)形成過程和演變規(guī)律研究[D];山東大學(xué);2015年
2 彭軍;基于微孔發(fā)泡注塑成型的制品表面質(zhì)量與多孔支架制備研究[D];華南理工大學(xué);2011年
3 余鵬;微孔發(fā)泡聚乳酸泡孔結(jié)構(gòu)調(diào)控及性能研究[D];華南理工大學(xué);2015年
4 劉本剛;超臨界CO_2發(fā)泡聚苯乙烯泡沫形態(tài)結(jié)構(gòu)調(diào)控研究[D];北京化工大學(xué);2015年
5 許琳瓊;多途徑調(diào)控微孔材料泡孔結(jié)構(gòu)及機理分析[D];華南理工大學(xué);2013年
6 廖若谷;超臨界二氧化碳發(fā)泡過程中聚合物泡孔結(jié)構(gòu)的控制[D];上海交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 白天天;成型方法對SCF微孔發(fā)泡制品泡孔結(jié)構(gòu)及力學(xué)性能的影響[D];鄭州大學(xué);2017年
2 夏秋燕;超臨界CO_2制備微孔發(fā)泡PC/PMMA薄膜及其性能研究[D];南京理工大學(xué);2015年
3 汪濤濤;異氰酸酯官能團(tuán)化聚丙烯及其與氧化石墨烯復(fù)合材料的微孔發(fā)泡[D];浙江大學(xué);2015年
4 劉智峰;線型低密度聚乙烯/納米粒子復(fù)合材料的超臨界微孔發(fā)泡[D];寧波大學(xué);2015年
5 羅特;超臨界N_2微孔發(fā)泡注塑成型技術(shù)研究[D];福州大學(xué);2014年
6 王斌榕;熱塑性聚酰亞胺超臨界二氧化碳的微孔發(fā)泡研究[D];華東理工大學(xué);2016年
7 何穎;微孔發(fā)泡聚合物工藝與增韌機理的研究[D];貴州大學(xué);2006年
8 周麗;微孔發(fā)泡過程與微孔形態(tài)關(guān)系的研究及對材料韌性的影響[D];貴州大學(xué);2006年
9 汪岳;改善微孔發(fā)泡注塑成型制品表面質(zhì)量的研究[D];上海交通大學(xué);2012年
10 范金;聚合物微孔發(fā)泡氣泡長大理論的研究[D];吉林大學(xué);2013年
,本文編號:2389919
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2389919.html