大型焦?fàn)t攔焦?fàn)t口煙塵擴(kuò)散分析及集氣罩結(jié)構(gòu)優(yōu)化
[Abstract]:Flue dust is the main source of pollution in coke oven coke arresting process, and the gas collecting hood is the core part of the flue dust removal system. At present, the design and research of gas collecting cover of coke oven mouth are mainly based on previous engineering experience, and lack of theoretical analysis and simulation research. In order to reduce the pollution of coke oven dust and improve the dust collection efficiency of the dust collection system at the mouth of the furnace, this paper takes the rammed coke oven of a coking plant in Shandong Province as an example, and carries out theoretical analysis and experimental verification of the smoke diffusion at the mouth during the coke arresting period. The structural parameters of the front-end collector hood of the flue dust removal system are simulated and analyzed. Firstly, this paper analyzes the coke arresting technology of ramming coke oven and the dust removal technology in the coke arresting process, and determines that the flue dust is the main pollution source in the coke arresting process at present. Then, the main equipment components of the dust removal system of the furnace mouth are the gas collecting hood. The rectangular duct and the guide fan are analyzed and compared, and the solid model is established by UG software. The main elements in flue gas and the compounds that pollute the air were determined by sampling and analyzing the particulate matter in the flue gas. The particle size of the smoke was analyzed and the diffusion of the smaller particles was almost completely moved with the air flow. Then, by studying various diffusion theories, it is determined that the study is based on Gao Si's diffusion model. Because the flue gas diffusion in coke oven is a problem of close range pollution, and the temperature of pollution source is high, Therefore, the flue gas diffusion at the furnace entrance is determined to be a high temperature floating jet. Based on the point source buoyancy plume theory, the temperature variation on the axis line in flue gas diffusion was analyzed, and the smoke diffusion process at the furnace entrance was photographed by using ThermaCAMS65 infrared thermal imaging system. According to the temperature sampling of the axial center of the diffusion thermal image, the variation is basically fitted to the theoretical analysis in the range of the sampling distance, which verifies the correct selection of the model and provides the theoretical support for the next research. Through the analysis of flue gas diffusion at the furnace entrance, the heat source is the main power of diffusion before entering the gas collecting hood, and the negative pressure region formed in the hood has an important influence to make the flue gas enter into the gas collecting hood. Using fluent software to simulate the inner flow field of the gas collecting hood, the model is simplified, the appropriate turbulence model is selected, the calculation area is meshed, and the reasonable boundary conditions are determined. The structural parameters of the collector hood are analyzed. The variation of the negative pressure region and the pressure at each point on the axis line are compared under three conditions: the number of the rectangular duct, the inclined angle of the opening surface and the position of the rectangular duct. The results show that when two rectangular air ducts are placed, the inclined angle of the opening surface is about 5 擄, or the rectangular duct is placed on both sides, the negative pressure region formed in the gas collecting hood is better. Due to the limited environmental space, rectangular duct placement on both sides is not desirable. By analyzing the gas phase flow field of the gas collecting hood and improving the structure parameters of the gas collecting hood, the gas-solid two-phase simulation of flue dust in the coke arresting process was carried out by using the discrete model in fluent. The particle size and surface morphology of the particles were analyzed by sampling the smoke particles near the ground dedusting station and the furnace mouth, and the parameters of the simulated particles were determined. According to the surrounding environment, the calculated area is established. According to the actual situation, four particle sizes of 50 渭 m ~ 100 渭 m ~ (100 渭 m) and 200 渭 m represent the distribution of smoke particles at the mouth of the furnace. The simulation and comparative analysis are carried out. The results show that the smaller particles have better mobility with the gas velocity field, and the movement time is shorter in the gas collecting hood, while the larger particles are more vulnerable to the influence of gravity, and if the moving time is longer, it is easy to pile up.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ520.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 解成巖;;大氣污染對(duì)環(huán)境和健康的危害[J];黑龍江環(huán)境通報(bào);2016年03期
2 任偉艷;孫艷宏;馮淑娟;周旭;沈志康;;氧碘化學(xué)激光器廢氣排放污染評(píng)價(jià)[J];強(qiáng)激光與粒子束;2016年07期
3 曹亞鵬;周宏兵;孫曉紅;戴鵬;朱振新;;潛孔鉆機(jī)撲塵罩流場(chǎng)分析及結(jié)構(gòu)優(yōu)化[J];機(jī)械科學(xué)與技術(shù);2015年08期
4 崔之健;董超云;黃凱亦;周加明;鄭建剛;張麗春;;攜砂液流對(duì)除砂器針型閥沖蝕作用模擬研究[J];西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期
5 李剛;周建軍;;攔焦車除塵裝置的改進(jìn)和利用[J];科技風(fēng);2014年13期
6 趙欽強(qiáng);;搗固焦?fàn)t煙塵控制技術(shù)[J];潔凈煤技術(shù);2013年03期
7 張紅艷;魏春燕;鄭秀麗;楊麗平;;淺談大氣污染的危害、來(lái)源及防治措施[J];河南科技;2013年01期
8 劉洋;李東濤;何龍;;搗固煉焦對(duì)焦炭質(zhì)量的影響[J];燃料與化工;2012年06期
9 楊春朝;章易程;歐陽(yáng)智江;張晶;楊松枝;張睿之;;基于流場(chǎng)模擬的真空清掃車吸塵口的參數(shù)設(shè)計(jì)[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年09期
10 徐堯;;熱浮力罩焦側(cè)除塵系統(tǒng)剖析與改造應(yīng)用[J];工業(yè)安全與環(huán)保;2012年07期
相關(guān)重要報(bào)紙文章 前2條
1 豐恒夫;;大型搗固焦?fàn)t裝備技術(shù)的研發(fā)與改進(jìn)[N];世界金屬導(dǎo)報(bào);2013年
2 齊作權(quán);牛帥;;太重6.25米搗固焦?fàn)t成功下線[N];山西日?qǐng)?bào);2012年
相關(guān)博士學(xué)位論文 前2條
1 黃艷秋;工業(yè)建筑中高溫浮射流作用下室內(nèi)環(huán)境控制特性研究[D];西安建筑科技大學(xué);2015年
2 高小明;湍流邊界層控制對(duì)流動(dòng)及換熱影響研究[D];天津大學(xué);2014年
相關(guān)碩士學(xué)位論文 前9條
1 劉琳;旋風(fēng)分離器內(nèi)氣固兩相流數(shù)值模擬與穩(wěn)定性研究[D];浙江理工大學(xué);2016年
2 嚴(yán)萍萍;焦?fàn)t作業(yè)生產(chǎn)計(jì)劃與優(yōu)化調(diào)度方法的研究與應(yīng)用[D];大連理工大學(xué);2015年
3 朱筱俊;基于CALPUFF模型的大氣環(huán)境容量研究[D];天津大學(xué);2014年
4 曹亞鵬;潛孔鉆機(jī)捕塵罩流場(chǎng)與結(jié)構(gòu)優(yōu)化[D];中南大學(xué);2014年
5 張春成;SK型靜態(tài)混合器污泥與藥劑混合性能研究[D];中南大學(xué);2014年
6 孫潔;室外管道燃?xì)庑孤⿺U(kuò)散模擬與可視化研究[D];重慶交通大學(xué);2012年
7 陳建新;渣漿泵內(nèi)部流場(chǎng)的數(shù)值模擬[D];蘭州理工大學(xué);2010年
8 王磊;鞍鋼干熄焦除塵設(shè)備設(shè)計(jì)與仿真分析[D];燕山大學(xué);2010年
9 吳宗旺;重鋼集團(tuán)焦化生產(chǎn)系統(tǒng)改進(jìn)研究及應(yīng)用[D];重慶大學(xué);2008年
,本文編號(hào):2266808
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2266808.html