一種礦熱爐交流磁場(chǎng)流路徑切向探測(cè)儀的開(kāi)發(fā)
[Abstract]:During the normal production of the furnace, complex physical chemical reactions occur in the furnace. The strong electric current is introduced into the furnace through the electrode, and the electric extreme position affects the length of the electric arc, and then affects the furnace temperature and the chemical reaction speed in the furnace. So the electrode depth should be controlled in a certain range, not too deep or too shallow. Because the electrode current of the furnace is very strong, even if there is the metal shielding effect on the furnace wall, there must be magnetic field information reflecting the current magnitude and direction of the furnace outside the furnace. By obtaining the distribution of the magnetic field information, we can know the key parameters such as the electric extreme part, which can stabilize the furnace condition, improve the technology, reduce the energy consumption and reduce the accident in the production process of the furnace. It has important practical significance and broad engineering application prospect to improve economic benefit. In this paper, an alternating current path tangential detector is designed. The tangential direction of the magnetic field flow path is analyzed according to the magnetic field component measured during the two rotation of the probe. First, the probe rotates 180 degrees around the azimuth axis. The maximum position of the magnetic field component is detected in the process, and then the maximum magnetic field component position is detected again by rotating 180 degrees around the pitch axis. Finally, the tangential direction of the magnetic field flow path can be indicated by the indicating rod. The main work of this paper is as follows: (1) the working principle of the detector. Firstly, based on the structure of the furnace and the magnetic field distribution model, the concept of the tangential direction of the magnetic field flow path is introduced, and the mathematical model of the detector is discussed, and the principle of determining the tangential direction of the magnetic field flow path is analyzed. Then, the structure of the detector is designed to lay a foundation for the realization of the object and function of the detector. (2) the system construction and function module development of the detector. Firstly, the overall structure of the magnetic field flow path tangential detector system is described from the aspects of the design and implementation of the mechanical part entity construction and control system, and the relative development software of the engineering realization is briefly introduced. This paper introduces the design and implementation method of each function module from two aspects of the basic function development and the control interface design of the detector in order to prepare for the integrated testing of the detector system. (3) the system integration test of the detector. Firstly, the output signal of the knob potentiometer is used as the test signal, which verifies that the detector system under the excitation of the signal can achieve the expected functions, and then, in the alternating magnetic field environment, the integrated test of the magnetic field flow path tangential detector is carried out. It is verified that the detector system can indicate the tangential direction of the magnetic field flow path, and realize the functions of leveling, starting, storing, reset and reproducing, so as to achieve the desired purpose.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TF33
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊芳園;;錳硅礦熱爐冶煉安全風(fēng)險(xiǎn)與控制[J];鐵合金;2017年04期
2 馮建國(guó);陳根強(qiáng);丁潔彬;;礦熱爐用擠壓大規(guī)格Φ600~800 mm高品質(zhì)石墨電極研制可行性分析[J];炭素技術(shù);2017年02期
3 魏俊英;;鐵合金礦熱電爐生產(chǎn)的節(jié)能思路[J];中國(guó)金屬通報(bào);2017年03期
4 劉衛(wèi)玲;翁健圢;常曉明;;礦熱爐冶煉關(guān)鍵參數(shù)的三維磁場(chǎng)陣列檢測(cè)系統(tǒng)[J];太原理工大學(xué)學(xué)報(bào);2017年02期
5 黃文;;改進(jìn)10MV·A礦熱爐生產(chǎn)高碳錳鐵合金實(shí)踐[J];中國(guó)冶金;2017年03期
6 王力平;;電弧畸變和電抗對(duì)高硅錳硅合金生產(chǎn)影響的分析[J];鐵合金;2017年02期
7 李沛;陽(yáng)春華;賀建軍;桂衛(wèi)華;;基于短網(wǎng)壓降比的礦熱爐供電系統(tǒng)二次側(cè)數(shù)據(jù)實(shí)時(shí)計(jì)算[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年12期
8 師翊;劉桂陽(yáng);劉金明;;基于Unity 3D的撒肥機(jī)虛擬仿真[J];農(nóng)機(jī)化研究;2014年07期
9 吳儉民;王慶賢;徐志奇;朱強(qiáng)化;;礦熱爐電極工作長(zhǎng)度監(jiān)測(cè)系統(tǒng)的研究與實(shí)現(xiàn)[J];化工自動(dòng)化及儀表;2014年02期
10 費(fèi)丹;熊磊;吳建強(qiáng);;基于軟件無(wú)線電的無(wú)線信道仿真儀設(shè)計(jì)與實(shí)現(xiàn)[J];儀器儀表學(xué)報(bào);2013年S1期
相關(guān)博士學(xué)位論文 前1條
1 鄒國(guó)林;熔融沉積制造精度及快速模具制造技術(shù)的研究[D];大連理工大學(xué);2002年
相關(guān)碩士學(xué)位論文 前1條
1 閆礪鋒;運(yùn)動(dòng)控制技術(shù)研究及運(yùn)動(dòng)控制板卡開(kāi)發(fā)[D];四川大學(xué);2001年
,本文編號(hào):2224798
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2224798.html