天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程碩士論文 >

煤礦員工安全行為評(píng)價(jià)及預(yù)警研究

發(fā)布時(shí)間:2018-08-22 17:46
【摘要】:眾所周知,能源問題關(guān)乎國民經(jīng)濟(jì)命脈。國家"十三五"規(guī)劃指出打造綠色煤炭能源勢(shì)在必行。然而,據(jù)《中國煤炭工業(yè)年鑒》數(shù)據(jù)顯示,近二十年的煤礦事故占全國工礦企業(yè)事故的25%左右,死亡人數(shù)占40%左右。不言而喻,造成這些事故的原因不能僅僅從單一層面加以斷定,地方政府監(jiān)督不嚴(yán)、企業(yè)經(jīng)濟(jì)利益驅(qū)使、礦工安全意識(shí)低下、安全技能欠缺、作業(yè)環(huán)境差、安全管理混亂等因素均在特定水平上導(dǎo)致礦難發(fā)生,但歸根結(jié)底源于員工的行為。因此,針對(duì)復(fù)雜環(huán)境下的煤礦員工安全行為影響因素進(jìn)行有效識(shí)別和預(yù)控成為政府及企業(yè)決策者亟需解決的難題。本文以煤礦一線員工安全行為為研究對(duì)象,基于煤礦安全生產(chǎn)的復(fù)雜性和系統(tǒng)性,研讀國內(nèi)外文獻(xiàn),剖析2001年至2016年典型煤礦事故案例,歸納整合員工安全行為影響因素,借助典型事故分析、實(shí)地調(diào)研以及問卷調(diào)查、行為事件訪談等,驗(yàn)證所提取影響因子的可靠性和科學(xué)性。在甄別煤礦員工安全行為影響指標(biāo)的基礎(chǔ)上,對(duì)指標(biāo)進(jìn)行優(yōu)選及分析,量化指標(biāo)層級(jí)結(jié)構(gòu),進(jìn)而構(gòu)建切實(shí)有效的煤礦員工安全行為評(píng)價(jià)指標(biāo)體系。采用信息熵法,辨析計(jì)算煤礦員工安全行為各指標(biāo)權(quán)重。接著借助5P神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)、自適應(yīng)能力,通過對(duì)淮南礦業(yè)集團(tuán)、河南平煤礦業(yè)集團(tuán)下轄的10個(gè)已知樣本的學(xué)習(xí),獲取專家思維,采用訓(xùn)練好的網(wǎng)絡(luò)仿真尚未測(cè)度的樣本,有效縮減了人因在安全評(píng)價(jià)中影響程度;此外,通過訓(xùn)練好的網(wǎng)絡(luò)還可以求得各指標(biāo)相應(yīng)的權(quán)重大小,進(jìn)而根據(jù)權(quán)重值明晰指標(biāo)對(duì)煤礦員工安全行為的影響程度。在此基礎(chǔ)上,進(jìn)一步明確煤礦員工安全行為預(yù)警機(jī)制,即:預(yù)警指標(biāo)選取、預(yù)警體系構(gòu)成、單一指標(biāo)預(yù)警區(qū)間確定以及綜合指標(biāo)預(yù)警區(qū)間確定等。以此為基礎(chǔ),選用5P神經(jīng)網(wǎng)絡(luò)同遺傳算法改進(jìn)后的5P神經(jīng)網(wǎng)絡(luò)進(jìn)行對(duì)比分析,結(jié)果表明:GA-5P的收斂速度與測(cè)算精度更加準(zhǔn)確、有效。最后,依據(jù)預(yù)警分析與規(guī)避對(duì)策,以期實(shí)現(xiàn)煤礦安全預(yù)警管理模式的良好運(yùn)行及員工安全行為的有效綜合管控。
[Abstract]:As we all know, the energy problem concerns the lifeblood of the national economy. National "13 th five-year plan points out to build green coal energy is imperative." However, according to the data of China Coal Industry Yearbook, coal mine accidents account for about 25% of the accidents in China's industrial and mining enterprises in the past 20 years, and the death toll accounts for about 40%. It goes without saying that the causes of these accidents cannot be determined from a single level. Local governments are not strictly supervised, enterprises are driven by economic interests, miners have low awareness of safety, lack of safety skills, and poor working environment. Confusion in safety management and other factors all lead to mine accidents at certain level, but ultimately result from the behavior of employees. Therefore, it is a difficult problem for government and enterprise decision-makers to effectively identify and control the influencing factors of coal mine employees' safety behavior in complex environment. Based on the complexity and systematization of coal mine safety, this paper analyzes the typical coal mine accident cases from 2001 to 2016, and summarizes the influencing factors of integrating the safety behavior of the workers, based on the complexity and systematization of coal mine safety production. By means of typical accident analysis, field investigation, questionnaire investigation and behavior event interview, the reliability and scientificity of the factors extracted were verified. On the basis of discriminating the influence index of coal mine employee safety behavior, the index is selected and analyzed, and the index hierarchy structure is quantified, and an effective evaluation index system of coal mine employee safety behavior is constructed. The information entropy method is used to analyze and calculate the weights of coal mine employees' safety behavior. Then, with the help of self-learning and adaptive ability of 5p neural network, through the learning of 10 known samples under Huainan Mining Group and Henan Pingmei Mining Group, the expert thinking is obtained, and the trained network is used to simulate the unmeasured samples. The influence degree of human factor in safety evaluation is reduced effectively, in addition, the corresponding weight of each index can be obtained by the trained network, and then the influence degree of safety behavior of coal mine employees can be determined according to the weight value. On this basis, it is further clear that the early warning mechanism of coal mine employees' safety behavior, namely: early warning index selection, early warning system composition, single index early warning interval determination and comprehensive index early warning interval determination and so on. On this basis, 5p neural network is compared with the improved 5P neural network based on genetic algorithm. The results show that the convergence rate and the accuracy of the calculation are more accurate and effective. Finally, according to the early warning analysis and the circumvention countermeasure, the author hopes to realize the good operation of the coal mine safety early warning management mode and the effective comprehensive control of the safety behavior of the staff.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD79;F426.21

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 朱艷娜;何剛;張貴生;喬國通;;煤礦人因事故不安全行為關(guān)聯(lián)分析[J];工業(yè)安全與環(huán)保;2017年04期

2 占南;;基于扎根理論的個(gè)人信息管理行為研究[J];圖書館學(xué)研究;2016年15期

3 王君萍;白瓊瓊;;我國能源上市企業(yè)財(cái)務(wù)危機(jī)預(yù)警研究[J];經(jīng)濟(jì)問題;2015年01期

4 馬鴻廉;王金鳳;馮立杰;;煤礦災(zāi)害預(yù)警影響因素仿真分析[J];工業(yè)安全與環(huán)保;2014年10期

5 唐非;劉穎;楊仁斌;鄒冬生;;第一次經(jīng)濟(jì)革命的人類行為與環(huán)境生態(tài)反應(yīng)[J];生態(tài)環(huán)境學(xué)報(bào);2014年08期

6 郭紅領(lǐng);劉文平;張偉勝;;集成BIM和PT的工人不安全行為預(yù)警系統(tǒng)研究[J];中國安全科學(xué)學(xué)報(bào);2014年04期

7 蔣亞奇;;基于多元Probit模型的上市旅游公司的財(cái)務(wù)預(yù)警[J];統(tǒng)計(jì)與決策;2014年03期

8 趙代英;何學(xué)秋;江田漢;;我國煤礦行業(yè)安全生產(chǎn)預(yù)警指數(shù)模型研究[J];中國安全生產(chǎn)科學(xué)技術(shù);2014年01期

9 何剛;喬國通;曹華亮;楊霞;;煤炭企業(yè)員工安全行為水平量化研究[J];中國安全科學(xué)學(xué)報(bào);2013年04期

10 李芳薇;袁震宇;李永娟;;工作環(huán)境壓力源對(duì)煤礦工人反生產(chǎn)行為和安全的影響[J];中國安全科學(xué)學(xué)報(bào);2012年06期



本文編號(hào):2197850

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2197850.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8994e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com