導(dǎo)電高分子復(fù)合材料的導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu)調(diào)控及外場響應(yīng)性能研究
本文選題:導(dǎo)電高分子復(fù)合材料 + 導(dǎo)電網(wǎng)絡(luò); 參考:《鄭州大學(xué)》2017年碩士論文
【摘要】:導(dǎo)電高分子復(fù)合材料(CPCs)是由導(dǎo)電填料(如炭黑、碳納米管、石墨烯和金屬粒子等)和高分子基體復(fù)合制備而成,近年來其結(jié)構(gòu)及性能研究受到了學(xué)術(shù)界和工業(yè)界的廣泛關(guān)注。CPCs不僅具有優(yōu)異的電學(xué)性能和可加工性,而且作為一種功能性高分子材料,其對(duì)應(yīng)力、應(yīng)變、氣體、溫度和濕度等外界刺激表現(xiàn)出豐富的響應(yīng)行為。這些特性不僅為探索CPCs的微觀結(jié)構(gòu)演變提供了研究素材,還為其在敏感器件領(lǐng)域的應(yīng)用提供了理論基礎(chǔ)。本文中,我們通過對(duì)CPCs中導(dǎo)電網(wǎng)絡(luò)的設(shè)計(jì)和調(diào)控,制備了具有不同微觀結(jié)構(gòu)的CPCs,探索了CPCs對(duì)外場刺激的響應(yīng)行為,分析了CPCs結(jié)構(gòu)調(diào)控與性能的關(guān)系。具體如下:1、還原氧化石墨烯(RGO)/熱塑性聚氨酯(TPU)/聚二甲基硅氧烷(PDMS)導(dǎo)電復(fù)合材料制備及其性能研究1)本文首先通過靜電紡絲技術(shù)制備了具有取向結(jié)構(gòu)的TPU纖維膜,隨后利用超聲法制備出RGO/TPU取向和非取向?qū)щ娎w維網(wǎng)絡(luò),之后分別基于這兩種導(dǎo)電纖維網(wǎng)絡(luò)制備了具有“三明治”結(jié)構(gòu)的RGO/TPU/PDMS導(dǎo)電復(fù)合材料。2)研究了基于取向纖維和非取向纖維導(dǎo)電網(wǎng)絡(luò)制備的復(fù)合材料的應(yīng)力-應(yīng)變和應(yīng)變-電阻響應(yīng)行為。前者呈現(xiàn)出高的力學(xué)強(qiáng)度和響應(yīng)強(qiáng)度,這主要是導(dǎo)電網(wǎng)絡(luò)中取向纖維結(jié)點(diǎn)的存在和RGO在纖維上呈現(xiàn)出“魚鱗片”狀的結(jié)構(gòu),使得它們在動(dòng)態(tài)拉伸過程中導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu)呈現(xiàn)不同的演化過程造成的。3)基于取向纖維導(dǎo)電網(wǎng)絡(luò)制備出的RGO/TPU/PDMS導(dǎo)電復(fù)合材料具有非常大的應(yīng)變范圍(150%應(yīng)變)、極高的靈敏度(高達(dá)593)、良好的耐用性(500次)、快的響應(yīng)時(shí)間(160 ms)以及良好的耐濕度和耐高溫等特點(diǎn),滿足了其作為柔性可穿戴應(yīng)變傳感器的應(yīng)用需求。4)將該柔性復(fù)合材料固定在人體的不同部位,通過電信號(hào)的響應(yīng)監(jiān)測了人體的運(yùn)動(dòng)規(guī)律,展現(xiàn)出該材料在柔性可穿戴電子設(shè)備和智能機(jī)器等領(lǐng)域廣泛的應(yīng)用前景。2、碳納米管(CNTs)/TPU/PDMS導(dǎo)電復(fù)合材料制備及其應(yīng)變敏感性能的研究1)我們首先通過靜電紡絲技術(shù)和超聲方法制備出CNTs/TPU取向?qū)щ娎w維網(wǎng)絡(luò),隨后通過澆筑成型法制備了CNTs/TPU/PDMS導(dǎo)電復(fù)合材料。2)為了探索導(dǎo)電復(fù)合材料在拉伸過程中內(nèi)部導(dǎo)電網(wǎng)絡(luò)的演變過程,我們研究了CNTs/TPU/PDMS導(dǎo)電復(fù)合材料在不同應(yīng)變和不同速率下的相對(duì)電阻變化行為。結(jié)果復(fù)合材料內(nèi)部導(dǎo)電網(wǎng)絡(luò)的破壞與重組的競爭使材料的響應(yīng)行為出現(xiàn)了肩峰現(xiàn)象;大應(yīng)變促使材料表現(xiàn)出大的響應(yīng)度;大的拉伸速率也使材料表現(xiàn)出更高的響應(yīng)度,這歸因于在循環(huán)拉伸過程中復(fù)合材料要經(jīng)受更大的應(yīng)力,引起導(dǎo)電網(wǎng)絡(luò)的更大破壞。3)該材料可用于人體運(yùn)動(dòng)的在線監(jiān)測,本材料的結(jié)構(gòu)及性能調(diào)控方法為制備柔性可穿戴應(yīng)變傳感器提供了新思路。3、CNTs/聚丙烯(PP)導(dǎo)電復(fù)合材料制備及其溫度敏感性能的研究1)本文通過溶解破碎法和直接粉碎法制備了不同粒徑的PP粒子,然后采用機(jī)械研磨-熱壓成型法制備了具有隔離導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu)的CNTs/PP復(fù)合材料,大大降低了復(fù)合材料的導(dǎo)電逾滲值。2)通過使用不同粒徑的PP顆粒,調(diào)控了材料隔離結(jié)構(gòu)的導(dǎo)電網(wǎng)絡(luò),制備出了具有可調(diào)控正溫度系數(shù)(PTC)特性的CPCs,實(shí)現(xiàn)了PTC強(qiáng)度從102到106的轉(zhuǎn)變。隨著PP粒子粒徑的增加,復(fù)合材料的逾滲值降低,呈現(xiàn)出負(fù)相關(guān)性。此外,本文還制備出超高PTC強(qiáng)度的CNTs/PP復(fù)合材料。3)這種可調(diào)控PTC效應(yīng)的導(dǎo)電高分子復(fù)合材料對(duì)制備可調(diào)控的溫度傳感器提供了新思路。
[Abstract]:Conductive polymer composites (CPCs) are made from conductive fillers (such as carbon black, carbon nanotubes, graphene and metal particles) and polymer matrix. In recent years, the structure and properties of the polymer have been widely concerned by the academic and industrial circles..CPCs not only has excellent electrical properties and machinability, but also is a functional property. Polymer materials have rich response behavior to external stimuli such as force, strain, gas, temperature and humidity. These properties not only provide research materials for the exploration of the microstructure evolution of CPCs, but also provide a theoretical basis for its application in the field of sensitive devices. In this paper, we have designed and adjusted the conductive network in CPCs. Controlled, the CPCs with different microstructure was prepared, and the response behavior of CPCs to external field stimulation was explored. The relationship between the structure regulation and performance of CPCs was analyzed. 1, the preparation and properties of the reduced graphene oxide (RGO) / thermoplastic polyurethane (TPU) / poly (two methyl siloxane) conductive composites and their properties were studied in this paper by electrostatic spinning first. TPU fiber films with orientation structure were prepared by wire technology. Then RGO/TPU oriented and non oriented conductive fiber networks were prepared by ultrasonic method. Then, the RGO/TPU/PDMS conductive composite.2 with "sandwich" structure was prepared on the basis of these two kinds of conductive fiber networks. The conductive fiber and non oriented fiber conductive network were studied. The stress-strain and strain resistance response behavior of the composite materials has high mechanical strength and response strength. This is mainly the existence of the orientation fiber nodes in the conductive network and the "fish scale" like structure of RGO on the fiber, which makes the conductive network structure in the process of dynamic stretching show different performance. The.3 produced by the chemical process is based on the high strain range (150% strain), high sensitivity (up to 593), good durability (500 times), fast response time (160 ms), good humidity and high temperature resistance, which satisfy the flexibility and wearability. The application requirement of strain sensor.4) the flexible composite material is fixed in different parts of the human body and the motion law of the human body is monitored through the response of the electrical signal. The wide application prospect of the material in the fields of flexible wearable electronic equipment and intelligent machine,.2, the preparation of carbon nanoscale tube (CNTs) /TPU/PDMS conductive composite and its should be presented. The study of variable sensitivity 1) we first prepared the CNTs/TPU oriented conductive fiber network by electrospinning technology and ultrasonic method, and then the CNTs/TPU/PDMS conductive composite.2 was prepared by the pouring molding method. In order to explore the evolution process of the conductive network in the process of the conductive composite in the stretching process, we studied the CNTs/TPU/PDMS The relative resistance change behavior of the conductive composites at different strain and different rates. Results the failure of the conductive network and the competition of the recombination made the response behavior of the material acromion, the large strain prompted the material to show a large response degree, and the large tensile rate also showed a higher response to the material. This material can be used for on-line monitoring of human motion because of more stress and more damage to the conductive network in the process of cyclic stretching. The material can be used for on-line monitoring of human motion. The structure and performance control method of this material provides a new idea for the preparation of flexible wearable strain sensors, the preparation of.3, CNTs/ polypropylene (PP) conductive composites and their temperature. The study of degree sensitive performance 1) in this paper, PP particles with different particle sizes were prepared by dissolving crushing and direct pulverization. Then a CNTs/PP composite with isolated conductive network structure was prepared by mechanical grinding and hot pressing. The conductive percolation value.2 of the composite was greatly reduced by using the PP particles with different particle sizes. The conductive network of material isolating structure has prepared CPCs with the characteristic of adjustable positive temperature coefficient (PTC), realizing the transformation of PTC strength from 102 to 106. With the increase of the particle size of PP particles, the percolation value of the composite is reduced and the negative correlation is present. In addition, this paper also makes the CNTs/PP composite.3 of super high PTC strength, this controllable P The conductive polymer composites with TC effect provide a new idea for the preparation of controllable temperature sensors.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 沈烈;楊輝;錢躍程;蔡云波;黃海曉;王方權(quán);;炭黑-碳纖維填充雙組分聚合物體系的導(dǎo)電網(wǎng)絡(luò)及其阻溫特性[J];復(fù)合材料學(xué)報(bào);2010年04期
2 曾尤;劉鵬飛;趙龍;杜金紅;劉暢;;碳納米管導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu)對(duì)復(fù)合材料拉伸變形的響應(yīng)性[J];新型炭材料;2013年02期
3 姜力強(qiáng);王林;張誠;馬淳安;;CB填充PVDF復(fù)合材料導(dǎo)電網(wǎng)絡(luò)形成的動(dòng)力學(xué)研究[J];浙江工業(yè)大學(xué)學(xué)報(bào);2008年06期
4 張誠;祝軍;王林;馬淳安;;CNTs在PVDF熔體中導(dǎo)電網(wǎng)絡(luò)形成的動(dòng)力學(xué)[J];稀有金屬材料與工程;2010年S2期
5 羅美芳;陳雪花;李春忠;邵瑋;;納米SnO_2:Sb導(dǎo)電薄膜制備及導(dǎo)電網(wǎng)絡(luò)形成機(jī)理[J];化學(xué)世界;2010年05期
6 ;極薄銀片的導(dǎo)電性能[J];金屬功能材料;2014年04期
7 周麗春;吳偉端;肖鳳英;;聚乙烯/納米二硫化鉬復(fù)合材料電性能[J];華僑大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
8 鐘林新;張美云;陳均志;張震強(qiáng);;碳纖維導(dǎo)電紙導(dǎo)電性能影響因素的研究[J];中國造紙;2008年04期
相關(guān)會(huì)議論文 前3條
1 沈佳斌;郭少云;;雙向拉伸對(duì)PP/CNT體系導(dǎo)電網(wǎng)絡(luò)的破壞與重建[A];2011年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
2 鹿燕;溫兆銀;靳俊;沈忱;吳相偉;吳梅芬;;雙三維導(dǎo)電網(wǎng)絡(luò)鋰空氣電池空氣電極的結(jié)構(gòu)設(shè)計(jì)及性能研究[A];中國固態(tài)離子學(xué)暨電池材料青年學(xué)術(shù)論壇——論文摘要集[C];2013年
3 陳國華;盧金榮;翁文桂;吳大軍;陳翔峰;;HDPE/石墨納米微片的制備及其導(dǎo)電網(wǎng)絡(luò)的剪切有序化[A];2004年全國高分子材料科學(xué)與工程研討會(huì)論文集[C];2004年
相關(guān)碩士學(xué)位論文 前7條
1 李國杰;導(dǎo)電高分子復(fù)合材料的導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu)調(diào)控及外場響應(yīng)性能研究[D];鄭州大學(xué);2017年
2 蔣雪;多元碳系導(dǎo)電網(wǎng)絡(luò)的構(gòu)建及其應(yīng)用[D];西南交通大學(xué);2015年
3 屈瑩瑩;具有導(dǎo)電超細(xì)纖維網(wǎng)絡(luò)的高分子復(fù)合材料的構(gòu)筑及其性能的研究[D];鄭州大學(xué);2015年
4 梁峧;宏孔導(dǎo)電網(wǎng)絡(luò)架構(gòu)下的納米石墨烯—?dú)溲趸抂D];華東師范大學(xué);2016年
5 楊偉霞;以碳納米管為介質(zhì)的聚合物導(dǎo)電泡沫的制備研究[D];北京化工大學(xué);2016年
6 楊輝;導(dǎo)電高分子復(fù)合材料的導(dǎo)電網(wǎng)絡(luò)構(gòu)筑與性能[D];浙江大學(xué);2010年
7 徐卓言;導(dǎo)電纖維網(wǎng)絡(luò)構(gòu)筑及其外場響應(yīng)性能研究[D];鄭州大學(xué);2017年
,本文編號(hào):2086171
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2086171.html