赭曲霉毒素A的熒光生物傳感檢測(cè)新方法研究
本文選題:量子點(diǎn) + 納米金; 參考:《聊城大學(xué)》2017年碩士論文
【摘要】:真菌毒素引起的食品安全問(wèn)題已成為世界各國(guó)關(guān)注的焦點(diǎn),目前已報(bào)道的檢測(cè)方法有很多種但各自都有其優(yōu)缺點(diǎn),因此,發(fā)展一種高選擇性、高靈敏度的檢測(cè)方法具有重要的理論和現(xiàn)實(shí)意義。隨著科技的發(fā)展,納米材料由于其獨(dú)特的結(jié)構(gòu)及特性在眾多的領(lǐng)域研究中受到越來(lái)越多的青睞。其在生命科學(xué)領(lǐng)域中的應(yīng)用已經(jīng)成為該領(lǐng)域研究的主流。納米材料與生物傳感器相結(jié)合,主要包括生命醫(yī)藥、化學(xué)化工、納米生物學(xué)等多個(gè)學(xué)科,具有很高的研究?jī)r(jià)值。本論文以核酸適配體的特異性識(shí)別能力為基礎(chǔ),將納米技術(shù)與生物傳感技術(shù)結(jié)合,利用納米材料在光學(xué)、化學(xué)及生物學(xué)方面表現(xiàn)出的特殊性質(zhì),以一種真菌毒素-赭曲霉毒素A為研究對(duì)象,建立了三種測(cè)定赭曲霉毒素A的新方法,實(shí)現(xiàn)了對(duì)赭曲霉毒素A的高靈敏、高選擇、高效率的識(shí)別與檢測(cè)。全文分為以下三部分:一、基于量子點(diǎn)熒光共振能量轉(zhuǎn)移檢測(cè)赭曲霉毒素A基于量子點(diǎn)與熒光猝滅基團(tuán)之間構(gòu)成的熒光共振能量轉(zhuǎn)移體系,以量子點(diǎn)標(biāo)記赭曲霉毒素A適配體與熒光猝滅基團(tuán)標(biāo)記的補(bǔ)體雜交構(gòu)成熒光傳感探針,當(dāng)有赭曲霉毒素A存在時(shí),由于其適配體與赭曲霉毒素A的高度親和作用,使傳感探針上結(jié)合的熒光猝滅劑減少,熒光增強(qiáng),從而建立了一種檢測(cè)赭曲霉毒素A的熒光分析方法。這種檢測(cè)方法簡(jiǎn)單、快速、特異性強(qiáng),在最優(yōu)的條件下,該方法在0.2μmol/L~1.6μmol/L內(nèi)有良好的線(xiàn)性關(guān)系,線(xiàn)性回歸方程為:ΔF=92.2c+95.06,線(xiàn)性相關(guān)系數(shù)R=0.9955,方法的檢出限為0.16μmol/L。二、基于納米金猝滅熒光的適配體傳感技術(shù)檢測(cè)赭曲霉毒素A基于分散和聚沉狀態(tài)下的納米金的熒光猝滅效應(yīng)的差異以及核酸適配體的特異性識(shí)別能力為基礎(chǔ),一種簡(jiǎn)單、快速、低成本的適配體傳感技術(shù)檢測(cè)赭曲霉毒素A。當(dāng)赭曲霉毒素A存在時(shí),可以與其適配體特異性結(jié)合,導(dǎo)致適配體構(gòu)象發(fā)生改變,適配體脫離納米金表面,納米金抗鹽能力減弱,熒光增強(qiáng),從而建立了一種檢測(cè)赭曲霉毒素A的熒光分析方法。實(shí)驗(yàn)過(guò)程中對(duì)鹽濃度、反應(yīng)時(shí)間等條件進(jìn)行了優(yōu)化。在最優(yōu)的條件下,該方法在25 nmol/L~300 nmol/L范圍內(nèi)有良好的線(xiàn)性關(guān)系,線(xiàn)性回歸方程為:ΔF=0.293c+4.263,線(xiàn)性相關(guān)系數(shù)R=0.9957,方法的檢出限為22.7 nmol/L。三、基于抗體包被的熒光免疫分析新模式測(cè)定赭曲霉毒素A基于二抗與半抗原競(jìng)爭(zhēng)結(jié)合固相抗體的免疫分析新模式,建立了測(cè)定赭曲霉毒素A的新型免疫熒光分析方法。本實(shí)驗(yàn)采用競(jìng)爭(zhēng)型的免疫反應(yīng)模式,IgG-FITC與半抗原OTA競(jìng)爭(zhēng)結(jié)合固相抗體,隨著半抗原OTA濃度的增加,與固相抗體結(jié)合的IgG-FITC濃度減少,熒光強(qiáng)度逐漸降低。在最優(yōu)的實(shí)驗(yàn)條件下,該方法在1 nmol/L~100μmol/L范圍內(nèi)有良好的線(xiàn)性關(guān)系,線(xiàn)性回歸方程為ΔF=43.68lgC+4.619,線(xiàn)性相關(guān)系數(shù)R=0.9918。方法的檢出限為0.34 nmol/L。
[Abstract]:The food safety problems caused by mycotoxins have become the focus of attention in the world. At present, there are many kinds of detection methods reported, but each has its own advantages and disadvantages. Therefore, the development of a high selectivity, High sensitivity detection method has important theoretical and practical significance. With the development of science and technology, nanomaterials are more and more popular in many fields because of their unique structure and characteristics. Its application in the field of life science has become the mainstream of research in this field. The combination of nanomaterials and biosensors, including life medicine, chemical chemistry, nanobiology and so on, has high research value. Based on the specific recognition ability of aptamers of nucleic acids, this paper combines nanotechnology with biosensor technology and makes use of the special optical, chemical and biological properties of nanomaterials. Three new methods for the determination of ochratoxin A were established with a mycotoxin-ochratoxin A as the object of study. The identification and detection of ochratoxin A with high sensitivity, selectivity and efficiency were realized. The thesis is divided into three parts as follows: first, the fluorescence resonance energy transfer system between quantum dots and fluorescence quenching groups is used to detect ochratoxin A based on the fluorescence resonance energy transfer of quantum dots. A fluorescence sensing probe was constructed by hybridization of the aptamer of ochratoxin A with the complement labeled by fluorescence quenching group. When ochratoxin A was present, the aptamer was highly compatible with ochratoxin A. A fluorescence analysis method for the detection of ochratoxin A was established by reducing the binding fluorescence quenching agent and enhancing the fluorescence intensity on the sensing probe. The method is simple, rapid and specific. Under the optimal conditions, the method has a good linear relationship in the range of 0.2 渭 mol / L ~ (1.6 渭 mol / L). The linear regression equation is: 螖 F ~ (92. 2) c 95.06, the linear correlation coefficient is R ~ (0.9955), and the detection limit of the method is 0.16 渭 mol 路L ~ (-1). Secondly, the difference of fluorescence quenching effect of ochratoxin A based on the fluorescence quenching of gold nanoparticles and the specific recognition ability of aptamers of nucleic acid is based on the difference of fluorescence quenching effect of ochratoxin A based on the fluorescence quenching of nanocrystalline gold and the ability of specific recognition of aptamers of nucleic acid. Rapid and low cost aptamer sensing technology for detection of ochratoxin A. When ochratoxin A exists, it can bind specifically with its aptamer, which leads to the change of aptamer conformation, the aptamer breaks away from the surface of nano-gold, the salt resistance of nano-gold decreases and the fluorescence increases. A fluorescence analysis method for the detection of ochratoxin A was established. The conditions of salt concentration and reaction time were optimized. Under the optimal conditions, the method has a good linear relationship in the range of 25nmol / L and 300nmol / L, the linear regression equation is 螖 F _ (0.293c) 4.263, the linear correlation coefficient R _ (r) is 0.9957, the detection limit of the method is 22.7 nmol / L, the linear regression equation is: 螖 F _ (0.293c) 4.263, the detection limit of the method is 22.7 nmol / L. 3. A new immunofluorescence analysis method for the determination of ochratoxin A was established based on a new immunoassay model based on the second antibody and hapten competition combined with solid phase antibody. In this experiment, competitive immunoreaction model was used to compete with hapten OTA to bind solid phase antibody. With the increase of hapten OTA concentration, the concentration of IgG-FITC bound with solid phase antibody decreased, and the fluorescence intensity decreased gradually. Under the optimal experimental conditions, the method has a good linear relationship in the range of 1 nmol / L ~ 100 渭 mol / L, the linear regression equation is 螖 F _ (4) 43.68 lgC 4.619, and the linear correlation coefficient R _ (0) 9918. The detection limit of the method was 0.34 nmol / L.
【學(xué)位授予單位】:聊城大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O657.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;歐盟擬修改食品內(nèi)某些赭曲霉毒素污染物的最高標(biāo)準(zhǔn)[J];食品與發(fā)酵工業(yè);2009年08期
2 許燁;馬榮山;李軍;;高效液相色譜法測(cè)定酒中的赭曲霉毒素A[J];釀酒;2006年02期
3 褚慶華;郭德華;王敏;王雄;沈建英;;谷物和酒類(lèi)中赭曲霉毒素A的測(cè)定[J];中國(guó)國(guó)境衛(wèi)生檢疫雜志;2006年02期
4 丁建英;韓劍眾;;赭曲霉毒素A的研究進(jìn)展[J];食品研究與開(kāi)發(fā);2006年03期
5 疏秀林;施慶珊;歐陽(yáng)友生;陳儀本;;赭曲霉毒素的產(chǎn)生及鑒別[J];中國(guó)衛(wèi)生檢驗(yàn)雜志;2008年10期
6 楊琳;馬良;;免疫學(xué)法檢測(cè)赭曲霉毒素A研究進(jìn)展[J];糧食與油脂;2010年01期
7 孫亞寧;胡驍飛;鄧瑞廣;職愛(ài)民;劉慶堂;柴書(shū)軍;王磊;宋幸輝;侯玉澤;張改平;;赭曲霉毒素A人工抗原的合成與鑒定[J];食品工業(yè)科技;2011年05期
8 徐志;劉春華;李春麗;吳曉春;;咖啡中赭曲霉毒素A研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2011年08期
9 傅武勝;邱文倩;鄭奎城;呂華東;郭斌;嚴(yán)小波;;藥食兩用類(lèi)食品中赭曲霉毒素A的高效液相色譜-熒光檢測(cè)方法[J];食品科學(xué);2011年14期
10 史娜;路勇;吳穎;姜杰;;高效液相色譜-串聯(lián)質(zhì)譜法測(cè)食品中的赭曲霉毒素A[J];食品科學(xué);2011年18期
相關(guān)會(huì)議論文 前5條
1 陳道付;金海濤;李紹鈺;;赭曲霉毒素A對(duì)肉雞的危害[A];河南省畜牧獸醫(yī)學(xué)會(huì)第七屆理事會(huì)第二次會(huì)議暨2008年學(xué)術(shù)研討會(huì)論文集[C];2008年
2 陳平;陳代文;田剛;毛倩;陳洪;余冰;;硒對(duì)赭曲霉毒素A毒害IPEC-J2細(xì)胞的保護(hù)作用研究[A];第六次全國(guó)飼料營(yíng)養(yǎng)學(xué)術(shù)研討會(huì)論文集[C];2010年
3 賈珍珍;賀玉梅;杜娟;董葵;;赭曲霉菌種產(chǎn)赭曲霉毒素A的實(shí)驗(yàn)研究[A];中國(guó)第六屆海峽兩岸菌物學(xué)學(xué)術(shù)研討會(huì)論文集[C];2004年
4 胡驍飛;孫亞寧;滕蔓;柴書(shū)軍;王磊;職愛(ài)民;劉慶堂;鄧瑞廣;張改平;;抗赭曲霉毒素A單克隆抗體的制備及鑒定[A];第六次全國(guó)飼料營(yíng)養(yǎng)學(xué)術(shù)研討會(huì)論文集[C];2010年
5 陳道付;李紹鈺;徐彬;魏鳳仙;焦玉萍;王琳q,
本文編號(hào):2005870
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2005870.html