天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程碩士論文 >

膠體光子晶體薄膜的規(guī);苽浼皯(yīng)用

發(fā)布時(shí)間:2018-04-29 06:08

  本文選題:膠體光子晶體薄膜 + 規(guī);苽。 參考:《華東師范大學(xué)》2017年碩士論文


【摘要】:膠體光子晶體是由單分散微米或亞微米級(jí)別的有機(jī)和無(wú)機(jī)膠體顆粒在重力、電場(chǎng)力、磁場(chǎng)力、剪切力或者毛細(xì)作用下組裝形成的二維或三維有序結(jié)構(gòu)。膠體光子晶體因其周期性的有序排列而具有特殊的光電性質(zhì)。因此,它在光學(xué)器件、光子晶體墨水、光子晶體印刷、染料、感應(yīng)器、光電池和光催化材料等多方面具有應(yīng)用價(jià)值。在膠體光子晶體領(lǐng)域,新型結(jié)構(gòu)基元的匱乏是一個(gè)亟待解決的問(wèn)題。最常見(jiàn)的光子晶體結(jié)構(gòu)基元是二氧化硅(SiO_2)和聚苯乙烯膠體顆粒(PS),但是這兩種物質(zhì)的折射率較低,一定程度上限制了膠體光子晶體的應(yīng)用范圍。近年來(lái),為了獲得性能更加優(yōu)越的膠體光子晶體,金屬氧化物及半導(dǎo)體材料已經(jīng)開(kāi)始被用來(lái)合成新型的光子晶體結(jié)構(gòu)基元。例如:Fe_3O_4、ZnS、ZnO、Cu_2O、Al_2O_3和TiO_2等。由于這些物質(zhì)分別具有不同的化學(xué)性質(zhì),賦予了光子晶體更多的應(yīng)用方向。此外,高效、經(jīng)濟(jì)、規(guī);慕M裝方法也是膠體光子晶體材料研究的關(guān)鍵。在過(guò)去十年中,人們通常采用垂直沉降法、浸漬提拉法、微乳流法、反相蛋白石法、震蕩剪切法、旋涂法、以及受熱力、磁場(chǎng)力和電場(chǎng)力誘導(dǎo)的組裝方法來(lái)制備膠體光子晶體。雖然這些方法都能滿足實(shí)驗(yàn)室規(guī)模的組裝和應(yīng)用,然而面向?qū)嶋H生產(chǎn)應(yīng)用,我們必須開(kāi)發(fā)更加高效的方法來(lái)實(shí)現(xiàn)光子晶體的規(guī);苽洹1菊撐膹男滦凸庾泳w結(jié)構(gòu)基元的合成和組裝方法的探索這兩方面展開(kāi)研究。在第一個(gè)工作中,我們利用種子生長(zhǎng)兩步法合成了高度單分散、尺寸均勻可調(diào)的ZnO膠體顆粒,并通過(guò)揮發(fā)、濃縮和旋涂的過(guò)程將ZnO膠體顆粒組裝成有序的膠體光子晶體薄膜。我們?cè)诒WC膠體顆均勻度和穩(wěn)定性的條件下可將合成體系擴(kuò)大到1.5 mL,所合成的ZnO光子晶體薄具有明亮、飽和的結(jié)構(gòu)色與均勻有序的內(nèi)部結(jié)構(gòu)。與無(wú)序的ZnO薄膜相比,有序的ZnO膠體光子晶體薄膜具有更高的光利用效率和更加優(yōu)越的光電性質(zhì),并且在長(zhǎng)時(shí)間的反應(yīng)中可以保持良好的穩(wěn)定性和光催化活性。將焙燒后的有序、無(wú)序ZnO膠體光子晶體薄膜應(yīng)于光催化還原CO2,我們發(fā)現(xiàn)當(dāng)光禁帶與電子吸收能帶相匹配時(shí),ZnO膠體光子晶體薄膜具有更高的光催化活性。在這項(xiàng)工作,我們通過(guò)旋涂法合成了具有優(yōu)越光催化活性的ZnO膠體光子晶體薄膜,實(shí)現(xiàn)了基于光子晶體結(jié)構(gòu)光催化劑的規(guī);苽,為光子晶體在光催化領(lǐng)域中的應(yīng)用奠定了基礎(chǔ)。第二項(xiàng)工作中,我們利用LBL技術(shù)合成了具有超順磁性質(zhì)的復(fù)合納米顆粒,并在溶劑揮發(fā)誘導(dǎo)和磁組裝的協(xié)同作用下實(shí)現(xiàn)了膠體光子晶體薄膜的規(guī)模化制備。我們通過(guò)靜電吸附作用依次將PEI和Fe_3O_4修飾在PS的表面,然后再包裹一層SiO_2。這種PS@PEI@Fe_3O_4@SiO_2膠體顆粒不僅尺寸可調(diào)、分布較窄,并且可以一次性進(jìn)行大量的合成,為后續(xù)的組裝奠定了良好的基礎(chǔ)。我們通過(guò)調(diào)節(jié)PS的尺寸和SiO_2的厚度可以得到280 nm~450 nm的膠體顆粒,利用不同尺寸的膠體顆?梢栽诖艌(chǎng)下組裝出具有不同飽和結(jié)構(gòu)色的光子晶體薄膜。此外,我們通過(guò)可見(jiàn)-近紅外反射光譜證明了光子晶體薄膜高度均勻,并發(fā)現(xiàn)了薄膜干涉現(xiàn)象。最終,我們通過(guò)連續(xù)注入濃縮液的方式在親水基底上進(jìn)行了光子晶體薄膜的連續(xù)制備,僅僅利用12分鐘就獲得了長(zhǎng)100cm、寬2cm的光子晶體膠帶。整個(gè)組裝過(guò)程不僅綠色環(huán)保、快速高效和節(jié)省原料,并且適用于多種日常生活中常見(jiàn)的基質(zhì)材料,為光子晶體薄膜的應(yīng)用提供了保障。
[Abstract]:Colloidal photonic crystal is a two-dimensional or three-dimensional ordered structure composed of organic and inorganic colloidal particles of monodisperse or submicron levels of organic and inorganic colloids under the action of gravity, electric field force, magnetic field force, shear force, or capillary action. Colloidal photonic crystals have special photoelectric properties because of their periodic ordered arrangement. Therefore, it is in optical devices and light. Crystal inks, photonic crystal printing, dyes, sensors, photocell and photocatalytic materials have many applications. In the field of colloidal photonic crystals, the lack of new structural elements is a problem to be solved urgently. The most common photonic crystal structure is two silicon oxide (SiO_2) and polystyrene colloid particles (PS), but this two In recent years, metal oxide and semiconductor materials have been used to synthesize new photonic crystal structure elements, such as Fe_3O_4, ZnS, ZnO, Cu_2O, Al_2O_3 and TiO_2. Some substances have different chemical properties respectively, which give more direction to the application of photonic crystals. In addition, high efficiency, economic and large-scale assembly method is also the key to the research of colloidal photonic crystal materials. In the past ten years, people usually use vertical settlement, impregnation drawing, microemulsion flow, reverse phase protein stone method, concussion shear method, spin. The coating method, as well as the assembly methods induced by thermal, magnetic and electric field forces, can be used to prepare colloidal photonic crystals. Although these methods can satisfy the assembly and application of the laboratory scale, we must develop a more efficient method to realize the large-scale preparation of photonic crystals. In the first work, we use seed growth two step method to synthesize highly monodisperse, evenly adjustable ZnO colloid particles and assemble ZnO colloid particles into ordered colloidal photonic crystal films by volatilization, concentration and spin coating in the first work. Under the condition of ensuring the uniformity and stability of the colloid, the synthetic system can be expanded to 1.5 mL, and the synthesized ZnO photonic crystal is thin with bright, saturated structure color and uniform and orderly internal structure. Compared with the disordered ZnO film, the ordered ZnO colloidal photonic crystal film has higher optical efficiency and superior photoelectric properties. The ordered, disordered ZnO colloidal photonic crystal film after calcination should be reduced to CO2 by photocatalytic reduction. We find that when the optical band is matched with the electron absorption band, the ZnO colloidal photonic crystal film has higher photocatalytic activity. In this work, we have found that the photocatalytic activity of the ZnO colloid photonic crystal film has higher photocatalytic activity. ZnO colloidal photonic crystal films with superior photocatalytic activity were synthesized by spin coating method, which realized the large-scale preparation of photocatalyst based on photonic crystal structure. It laid the foundation for the application of photonic crystal in the field of photocatalysis. In the second work, we synthesized the composite nanoparticles with superparamagnetic properties using LBL technology. Under the synergistic action of solvent volatilization and magnetic assembly, the colloidal photonic crystal film was prepared in scale. By electrostatic adsorption, we modified PEI and Fe_3O_4 on the surface of PS in turn, and then a layer of SiO_2. PS@PEI@Fe_3O_4@SiO_2 colloid particles were not only adjustable and narrow, but also can be used in one time. A good foundation is laid for subsequent assembly. The colloid particles of 280 nm to 450 nm can be obtained by adjusting the size of PS and the thickness of SiO_2. By using different sizes of colloid particles, we can assemble the photonic crystal with different saturation structure in the magnetic field. In addition, we pass the visible near infrared. The reflection spectrum shows the high uniformity of the photonic crystal film and the discovery of the film interference. Finally, we carry out continuous preparation of the photonic crystal film on the hydrophilic substrate by continuous injection of concentrated solution. Only 12 minutes can be used to obtain a long 100cm, wide 2cm photonic tape. The whole assembly process is not only green and green. It is fast, efficient and material saving, and is suitable for a variety of matrix materials in daily life. It provides a guarantee for the application of photonic crystal thin films.

【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O648.1;O734
,

本文編號(hào):1818714

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1818714.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dd64e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com