有機(jī)表面改性可膨脹石墨阻燃聚烯烴復(fù)合材料的形態(tài)結(jié)構(gòu)與性能研究
發(fā)布時(shí)間:2018-04-20 13:41
本文選題:可膨脹石墨 + 表面改性 ; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:聚丙烯(PP)和聚乙烯(PE)作為一種常見而且重要的通用塑料,具有優(yōu)良的加工性能、力學(xué)性能和價(jià)格低廉等優(yōu)點(diǎn),已經(jīng)被廣泛應(yīng)用于電子通訊、食品包裝、房屋建筑、汽車工業(yè)和航空制造工業(yè)等。但是其具有容易燃燒的缺點(diǎn),使其具有引發(fā)火災(zāi)的潛在危險(xiǎn),在生活應(yīng)用中時(shí)刻威脅著人們的生命和財(cái)產(chǎn)安全。為了克服其容易燃燒的行為,對(duì)于阻燃方面的研究迫在眉睫。本論文主要研究?jī)?nèi)容在于:通過向PP和PE中加入有機(jī)表面改性可膨脹石墨(EG)阻燃劑,研究了復(fù)合材料的燃燒行為、形態(tài)結(jié)構(gòu)變化以及對(duì)性能的影響。本文中主要采用了 EG為主體阻燃材料,由于它在阻燃過程中會(huì)存在比較明顯的缺點(diǎn)(加入量較多、劣化材料的力學(xué)強(qiáng)度、形成的膨脹石墨疏松且容易脫落、產(chǎn)生燭芯效應(yīng)等等)。因此本論文主要是針對(duì)EG進(jìn)行表面有機(jī)化處理,通過一系列的小分子阻燃劑和硅烷偶聯(lián)劑對(duì)EG進(jìn)行表面改性,旨在增強(qiáng)EG阻燃效果。主要的研究結(jié)果如下:(1)利用磷系阻燃劑A(P-FRA,DOPO)和硅烷偶聯(lián)劑(KH-560)接枝改性EG制備得到改性的可膨脹石墨(MEG)。將MEG用于阻燃PP,阻燃劑MEG量的增多,阻燃材料的氧指數(shù)值也隨著增加,當(dāng)加入量為30%時(shí)能夠使材料測(cè)試到達(dá)V-0級(jí)別。通過對(duì)它的阻燃機(jī)理分析,表明MEG可以顯著的增加阻燃材料在高溫下的殘?zhí)苛?得到比較連續(xù)的膨脹型炭層。由于有機(jī)化的表面使得在加入同等填料的情況下,MEG能夠減緩其對(duì)力學(xué)性能的劣化影響。(2)研究了 MEG對(duì)高密度聚乙烯/乙烯-醋酸乙烯共聚物(HDPE/EVA)體系的燃燒和阻燃行為的影響。當(dāng)MEG的添加量為20%就能夠使阻燃復(fù)合材料達(dá)到V-0的級(jí)別,同時(shí)氧指數(shù)為26.5%,在高溫下的殘?zhí)苛康竭_(dá)了 37.7%。采用錐形量熱儀表征測(cè)試得出MEG能夠極大地降低材料的熱釋放速率和煙密度,改善材料的燃燒行為。由于異相成核的原因,MEG的加入可以使材料的結(jié)晶度隨之增加。(3)采用氮系阻燃劑(N-FR)和硅烷偶聯(lián)劑(KH-560)對(duì)EG進(jìn)行表面化處理,制備出了改性的NEG。NEG用于制備阻燃HDPE/EVA材料,復(fù)合材料里由于協(xié)同阻燃方面的作用,當(dāng)NEG的添加量為20%時(shí)可以讓阻燃材料達(dá)到V-0級(jí)別。由于NEG在高溫下能夠產(chǎn)生大量不可燃性氣體,氣相阻燃機(jī)理使材料得熱釋放速率下降,改善了材料的燃燒行為。(4)采取磷系阻燃劑B(P-FRB)和硅烷偶聯(lián)劑(ITPS)對(duì)EG進(jìn)行表面接枝處理,制備出了表面改性的PEG,其表現(xiàn)出優(yōu)良的熱穩(wěn)定性能,在高溫下的殘?zhí)苛窟_(dá)到了 86.9%。將PEG阻燃劑用阻燃低密度聚乙烯(LDPE)時(shí),當(dāng)添加量為12%時(shí)就能夠使LDPE到達(dá)V-0級(jí)別,氧指數(shù)提高為25.1%。PEG對(duì)阻燃材料的熔融和結(jié)晶溫度影響不大,極大地增加了材料的結(jié)晶度,同時(shí)使材料維持一定的力學(xué)性能。傅里葉紅外測(cè)試結(jié)果表明,EG表面存在的P-FRB和ITPS在高溫下能夠形成磷酸酯類復(fù)合物和在表面形成一層耐高溫的保護(hù)層,使阻燃材料在高溫下呈現(xiàn)出優(yōu)良的熱性能。
[Abstract]:As a common and important common plastics, polypropylene (PP) and polyethylene (PE) have been widely used in electronic communication, food packaging, housing and construction because of their excellent processability, mechanical properties and low price. Automobile industry, aviation manufacturing industry, etc. However, it has the disadvantage of easy combustion, which makes it have the potential danger of causing fire, and it threatens people's life and property safety at all times in the application of life. In order to overcome its flammable behavior, it is urgent to study the flame retardancy. The main contents of this thesis are as follows: the combustion behavior, morphology change and effect on properties of PP and PE composites were studied by adding expandable graphite (EGG) flame retardant to PP and PE. In this paper, EG is mainly used as the main flame-retardant material. Because of its obvious shortcomings in the process of flame-retardant, such as more addition, the mechanical strength of the degraded material, the expanded graphite formed is loose and easy to fall off. Produce candle core effect and so on. Therefore, the surface of EG was modified by a series of small molecular flame retardants and silane coupling agents in order to enhance the flame retardant effect of EG. The main results are as follows: (1) the modified expanded graphite (MEGG) was prepared by grafting modified EG with phosphorous flame retardant Agna P-FRADPOO and silane coupling agent KH-560). When MEG was used in flame retardant PPPs, the content of flame retardant MEG increased, and the oxygen index of flame retardant material also increased with the increase. When the content of MEG was 30%, the material could be tested to V-0 level. Through the analysis of its flame retardant mechanism, it is shown that MEG can significantly increase the carbon residue of the flame retardant material at high temperature and obtain a more continuous intumescent carbon layer. The effect of MEG on the combustion and flame retardation of HDPE / vinylacetate copolymer (HDPE / EVA) system was studied by using the organic surface to slow down the deterioration of mechanical properties under the condition of the same filler. When the content of MEG is 20%, the flame retardant composites can reach V-0 level, and the oxygen index is 26.5, and the carbon residue reaches 37.7% at high temperature. The results of conical calorimeter show that MEG can greatly reduce the heat release rate and smoke density of the material and improve the combustion behavior of the material. Due to the reason of heterogeneous nucleation, the crystallinity of EG was increased with the addition of Meg. (3) the surface treatment of EG was carried out with nitrogen flame retardant (N-FR) and silane coupling agent (KH-560), and the modified NEG.NEG was prepared to prepare flame retardant HDPE/EVA material. Because of the synergistic flame-retardant effect in the composites, the flame-retardant material can reach V-0 grade when the content of NEG is 20. Because NEG can produce a large amount of incombustible gases at high temperature, the flame retardant mechanism of gas phase decreases the thermal release rate of the materials, and improves the combustion behavior of the materials. The surface grafting of EG is carried out by the phosphorous flame retardants BP- FRBB) and silane coupling agent. The surface modified PEG showed excellent thermal stability and the carbon residue reached 86.9% at high temperature. When PEG flame retardant is used as flame retardant low density polyethylene (LDPE), the LDPE can reach V-0 level when the addition amount is 12. The increase of oxygen index to 25.1%.PEG has little effect on the melting and crystallization temperature of the flame retardant material, and greatly increases the crystallinity of the material. At the same time, the material maintains certain mechanical properties. Fourier transform infrared spectroscopy (FTIR) results show that P-FRB and ITPS on the surface of EG can form phosphate complexes at high temperature and form a protective layer of high temperature resistance on the surface, which makes the flame retardant materials exhibit excellent thermal properties at high temperature.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ325.1;TB332
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 Shi-fu Liao;鄧聰;Sheng-chao Huang;Jing-yu Cao;王玉忠;;An Efficient Halogen-free Flame Retardant for Polyethylene:Piperazine-modified Ammonium Polyphosphates with Different Structures[J];Chinese Journal of Polymer Science;2016年11期
2 劉定福;梁基照;戈明亮;;高倍率無硫低溫可膨脹石墨的電化學(xué)法制備[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年10期
3 陳雅萍;李舒艷;羅瑞盈;呂曉猛;王煊軍;;化學(xué)氧化法制備可膨脹石墨過程中的電位控制[J];新型炭材料;2013年06期
4 黃健;田峻源;馬保國;趙子強(qiáng);方晨煒;洪正東;;氮-磷膨脹阻燃劑對(duì)聚苯乙烯泡沫的阻燃改性[J];武漢理工大學(xué)學(xué)報(bào);2013年09期
5 周箭;方晨鵬;盛建松;慕長(zhǎng)江;楊輝;;溶膠-凝膠法制備納米ZnO對(duì)無鹵阻燃聚丙烯的協(xié)同作用研究[J];稀有金屬材料與工程;2008年S2期
,本文編號(hào):1778004
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1778004.html
最近更新
教材專著