多羥基聚丁二烯的合成及其彈性體的制備研究
本文選題:端羥基聚丁二烯 + 多羥基聚丁二烯; 參考:《中北大學》2017年碩士論文
【摘要】:聚烯烴多元醇是一種制備彈性體的重要原料。常用的聚烯烴多元醇主要是分子鏈段中含有兩個羥基的端羥基聚丁二烯(HTPB),其本身具有透明度好、粘度低、耐油耐老化、低溫性能和加工性能好的優(yōu)點。但用HTPB制備的聚氨酯彈性體一般具有較低的拉伸強度和斷裂伸長率。多羥基聚丁二烯(PHPB)是結(jié)構中比HTPB含有更多羥基的遙爪型液體材料。由PHPB與異氰酸根反應生成的支化聚氨酯彈性體比線性聚氨酯彈性體結(jié)構中的氨酯基氫鍵多。高聚物分子間氫鍵的增多使得分子之間內(nèi)聚力增大,提高了聚氨酯彈性體力學性能。因此,通過分子設計改性HTPB制備出分子鏈段中含有多個羥基的PHPB具有一定的實用價值和科學理論意義。1.本文通過分子設計在氫氧化鈉堿性條件下,以HTPB和環(huán)氧氯丙烷(ECH)為原料,四丁基溴化銨(TBAB)為催化劑,首次在HTPB兩端接入更多的羥基制得PHPB。并用紅外光譜儀(IR)、氫核磁共振儀(1H-MNR)進行測試表征。通過單因素實驗優(yōu)選了合成PHPB的工藝條件。合成PHPB的較適宜的條件為:反應溫度為55℃,反應時間1.5 h,原料、氫氧化鈉以及催化劑的摩爾比為n(HTPB):n(ECH):n(Na OH):n(TBAB)=1:2.9:3:0.03。TG分析結(jié)果可知,較佳條件下合成的PHPB的熱穩(wěn)定性比HTPB的熱穩(wěn)定性好。2.以合成的PHPB為原料,甲苯二異氰酸酯(TDI)為固化劑,1,4-丁二醇(BDO)為擴鏈劑,二月桂酸二丁基錫(DBTDL)為催化劑,采用一步法制備聚氨酯彈性體。利用差示掃描量熱儀(DSC)、熱重分析儀(TG)以及電子萬能拉伸試驗分析儀對聚氨酯彈性體的力學性能和熱性能進行測試分析。實驗結(jié)果表明,當固化參數(shù)R=1.2,催化劑用量為0.6%,n(BDO):n(PHPB)=3:1,固化溫度為65℃時,制備的聚氨酯彈性體力學性能較好。較優(yōu)條件下制得的彈性體進行的拉伸強度為4.04 MPa,斷裂伸長率為282.02%,玻璃化轉(zhuǎn)變溫度在-20℃左右,熱分解溫度為226℃,最大熱失重速率出現(xiàn)在278.71℃和464.18℃,表現(xiàn)出優(yōu)異的熱學性能。3.不同的HTPB和PHPB固化體系粘度隨時間的變化不同,采用DV2T型旋轉(zhuǎn)粘度儀測定了不同的HTPB和PHPB固化體系粘度隨時間的變化。測定結(jié)果顯示:BDO作為擴鏈劑,DBTDL作為催化劑,固化參數(shù)R=1.2,HTPB-TDI和PHPB-TDI固化體系較佳。固化參數(shù)R相同時,PHPB-TDI-BDO-DBTDL體系固化所需時間比HTPB-TDI-BDO-DBTDL體系所用時間短。4.采用非等溫差示掃描量熱法研究了二月桂酸二丁基錫對HTPB-TDI-BDO和PHPB-TDI-BDO體系固化反應的動力學影響。結(jié)果表明,HTPB-TDI-BDO固化體系不加催化劑時表觀活化能為60.28 KJ·mol-1,加入二月桂酸二丁基錫的表觀活化能為48.39 KJ·mol-1,反應級數(shù)分別為0.886和0.864。PHPB-TDI-BDO固化體系無催化劑時表觀活化能為52.38 KJ·mol-1,而加入催化劑二月桂酸二丁基錫的表觀活化能為39.16 KJ·mol-1,反應級數(shù)分別為0.873和0.843。該結(jié)果說明,二月桂酸二丁基錫的加入降低了HTPB-TDI-BDO和PHPB-TDI-BDO固化體系的表觀活化能,加快了固化反應速率,縮短了固化時間;PHPB-TDI-BDO固化體系比HTPB-TDI-BDO固化體系的表觀活化能低,所需固化時間更短。
[Abstract]:Polyolefin polyol is an important raw material for preparation of polyolefin elastomer. Polyol is mainly used for hydroxyl terminated polybutadiene chains containing two hydroxyl groups (HTPB), which itself has good transparency, low viscosity, anti-aging oil, has the advantages of low temperature performance and good machining performance. But the polyurethane elastomer with HTPB prepared with low tensile strength and elongation at break. Polyhydroxylated polybutadiene (PHPB) is a telechelic liquid material containing more than HTPB in the structure of hydroxyl groups. Hyperbranched polyurethane elastomer produced by the PHPB and isocyanate reaction than ammonia ester bond of linear polyurethane elastomer structure in the multi. Cohesion between increased polymer molecular hydrogen bonds between the molecules increases and improves the mechanical properties of polyurethane elastomer. Therefore, through the molecular design of modified HTPB prepared by molecular chains containing multiple hydroxyl groups with a PHPB The practical value and scientific theory significance of.1. through molecular design in sodium hydroxide alkaline conditions with HTPB and epichlorohydrin (ECH) as raw materials, four Butyl Ammonium Bromide (TBAB) as the catalyst for the first time in the hydroxyl HTPB ends more access to the system PHPB. and infrared spectrometer (IR), hydrogen nuclear magnetic NMR (1H-MNR) were characterized by single factor experiment. The optimum process conditions of the synthesis of PHPB. The optimum conditions for the synthesis of PHPB, reaction temperature 55 C, reaction time 1.5 h, raw materials, sodium hydroxide and catalyst molar ratio of n (HTPB): n (ECH): n (Na OH) n: (TBAB) the results of =1:2.9:3:0.03.TG analysis, compared with the thermal stability of PHPB synthesized under optimal conditions than the good thermal stability of.2. HTPB using the PHPB as raw material, toluene diisocyanate (TDI) as curing agent, 1,4- butanediol (BDO) as chain extender, butyl tin two lauric acid two (DBTDL) for catalytic Agent, preparation of polyurethane elastomer by one step method. By using differential scanning calorimetry (DSC), thermogravimetric analyzer (TG) test and analysis of mechanical properties and thermal properties of electronic universal tensile test analyzer of polyurethane elastomer. The experimental results show that when the curing parameters of R=1.2, the amount of catalyst is 0.6%, n (BDO): n (PHPB) =3:1, the curing temperature is 65 degrees centigrade, the preparation of polyurethane elastomer properties. The tensile strength under the optimum condition of the elastic body is 4.04 MPa, the elongation is 282.02% glass transition temperature of -20 degrees Celsius, the thermal decomposition temperature of 226 DEG C, the maximum heat loss rate in 278.71 degrees and 464.18 degrees, showing excellent thermal properties of.3. HTPB PHPB and different curing system viscosity with different time, different HTPB and PHPB curing system viscosity with time was measured by DV2T type rotary viscometer The determination results showed that: BDO as chain extender, DBTDL as catalyst, curing parameters R=1.2, HTPB-TDI and PHPB-TDI curing system is better. The curing parameters of R phase at the same time, the PHPB-TDI-BDO-DBTDL system required for curing time than HTPB-TDI-BDO-DBTDL system in short time.4. using non isothermal effects of tributyltin two lauric acid two kinetics of HTPB-TDI-BDO and the PHPB-TDI-BDO curing reaction DSC. The results showed that the HTPB-TDI-BDO curing system without catalysts. The apparent activation energy is 60.28 KJ / mol-1, adding acid two butyl tin two laurel activation energy was 48.39 KJ - mol-1, the reaction order was 0.886 and 0.864.PHPB-TDI-BDO respectively. No apparent catalyst curing system the activation energy was 52.38 KJ and two mol-1, adding acid butyl tin catalyst two bay the apparent activation energy is 39.16 KJ - mol-1, the reaction order is 0.873 and 0.843. respectively the results That two lauric acid two butyl tin decreased with the addition of HTPB-TDI-BDO and PHPB-TDI-BDO curing system of apparent activation energy, accelerate the curing reaction rate, shorten the curing time; PHPB-TDI-BDO curing system of HTPB-TDI-BDO curing system than the apparent activation energy is low, the curing time is shorter.
【學位授予單位】:中北大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ334
【參考文獻】
相關期刊論文 前10條
1 鄭娜;介素云;李伯耿;;端羥基聚丁二烯液體橡膠的合成、化學改性及應用[J];化學進展;2016年05期
2 鐘汶桂;倪忠斌;東為富;施冬健;陳明清;;聚丁二烯型含氟聚氨酯彈性體的合成及性能研究[J];塑料工業(yè);2016年04期
3 齊永新;高建蘋;漆志剛;王善偉;張立芬;孟凡寧;鄧春華;李彥鋒;;端羥基聚丁二烯改性研究進展[J];化工新型材料;2014年05期
4 陳春燕;王曉峰;高立龍;鄭亞峰;;不同分子量HTPB與TDI的固化反應動力學[J];含能材料;2013年06期
5 杜達文;汪永彬;蘇玲;鄭偉姣;;聚氨酯彈性體的研究進展[J];化工中間體;2013年11期
6 程倩;梁基照;;聚丁二烯液體橡膠及其研究進展[J];特種橡膠制品;2013年04期
7 張敏;夏青;王昊;張寶峰;李猛;;聚醚型與聚酯型聚氨酯彈性體的性能研究[J];塑料工業(yè);2013年02期
8 辛浩波;齊安;;HTPB/PTMEG/DADMT聚氨酯彈性體的動態(tài)性能[J];高分子材料科學與工程;2012年09期
9 朱建君;陳慧娟;邢淑建;韓曉哲;;端羥基聚丁二烯聚氨酯彈性體/蒙脫土納米復合材料的制備與力學性能研究[J];非金屬礦;2011年02期
10 馬鐵寧;劉喜軍;陶海濤;張金翠;;HTPB/TDI/MCDEA型聚氨酯彈性體的研制[J];齊齊哈爾大學學報(自然科學版);2010年06期
,本文編號:1762144
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1762144.html