石墨相氮化碳復(fù)合材料的制備及光降解性能研究
發(fā)布時間:2018-04-01 14:38
本文選題:靜電紡絲 切入點:ZnO/g-C_3N_4(s)復(fù)合纖維 出處:《南京理工大學(xué)》2017年碩士論文
【摘要】:石墨相氮化碳納米片是近幾年來受到大量關(guān)注的材料之一,其擁有許多優(yōu)良的性質(zhì),比如與石墨烯類似的特殊的片狀結(jié)構(gòu),適合可見光吸收的帶隙,無金屬性質(zhì),非常好的穩(wěn)定性等,在許多方面展現(xiàn)出潛在的應(yīng)用價值,但同時又由于自身結(jié)構(gòu)和性質(zhì)的限制,在光催化降解領(lǐng)域依然存在一些抑制其應(yīng)用的問題,比如對太陽光整體吸收能力弱、光生電子-空穴易復(fù)合、納米片易發(fā)生團聚等問題。鑒于此,本文對g-C_3N_4(s)進行復(fù)合改性研究,制備得到 ZnO/g-C_3N_4(s)、C/g-C_3N_4(s)、TiO_2/g-C_3N_4(s)和 N-TiO_2/g-C_3N_4(s)納米復(fù)合纖維,采用FTIR、TGA、光學(xué)顯微鏡、SEM、XRD、UV-VISDRS、接觸角測量儀、光催化反應(yīng)儀和紫外可見分光光度計等表征手段測試了復(fù)合材料的組成、結(jié)構(gòu)和形貌以及光催化性能。首先,在PVP濃度為12wt%且含Zn(Ac)_2的紡絲液體系中,摻入少量g-C_3N_4(s)進行靜電混紡,得到PVP/Zn(Ac)_2/g-C_3N_4(s)復(fù)合纖維膜,纖維膜經(jīng)高溫煅燒后,FTIR、TGA和XRD譜圖均證明主要物質(zhì)為g-C_3N_4和ZnO,SEM照片觀察到g-C_3N_4(s)均勻地混入ZnO纖維的表面和內(nèi)部,光催化實驗表明ZnO/g-C_3N_4(s)復(fù)合纖維具有比單一的ZnO和g-C_3N_4(s)更優(yōu)異的光催化活性。其次,采用靜電紡絲方法制得PAN纖維膜,再通過懸滴浸入法結(jié)合高溫碳化過程,成功將g-C_3N_4(s)負(fù)載到碳纖維的表面。FTIR和XRD譜圖均顯示出g-C_3N_4(s)和C的存在,SEM照片清晰地觀察到g-C_3N_4(s)在C纖維表面的負(fù)載。光催化實驗結(jié)果表明,不同碳化溫度條件下分別得到的C/g-C_3N_4(s)復(fù)合纖維均具有很好的吸附性能,600℃條件下吸附性能最強,但500℃條件下得到的復(fù)合纖維光催化性能最好,與單一的g-C_3N_4(s)相比,活性明顯提高。再次,采用靜電紡絲法結(jié)合高溫煅燒過程合成出TiO_2纖維,再通過單層分散法結(jié)合熱處理過程,成功制備出TiO_2/g-C_3N_4(s)納米復(fù)合纖維。FTIR、TGA和XRD譜圖顯示出復(fù)合材料由g-C_3N_4(s)和TiO_2組成,SEM照片顯示g-C_3N_4(s)緊密粘附在TiO_2短纖維上。紫外-可見漫反射曲線證明復(fù)合材料具有更好的吸光性能,納米復(fù)合纖維相對于純的TiO_2和g-C_3N_4(s)而言模擬太陽光光降解性能顯著提高,可見光光降解性能也有略微提高。最后,以三聚氰胺為氮源和造孔劑,采用靜電紡絲法結(jié)合高溫煅燒過程合成出N-TiO_2纖維,再通過單層分散法結(jié)合熱處理過程,成功制備出N-TiO_2/g-C_3N_4(s)納米復(fù)合纖維。FTIR、TGA和XRD譜圖顯示出復(fù)合材料由g-C_3N_4(s)和N-TiO_2組成,SEM照片顯示N-TiO_2呈多孔短纖維結(jié)構(gòu),并且與g-C_3N_4(s)緊密結(jié)合在一起。光催化實驗結(jié)果表明,N-TiO_2/g-C_3N_4(s)納米復(fù)合纖維相對于純的N-TiO_2和g-C_3N_4(s)而言模擬太陽光光降解性能進一步顯著提高,可見光光降解性能也明顯提高,N-TiO_2纖維也表現(xiàn)出一定的可見光光降解性能,且光降解性能相對于TiO_2而言有一定的提高,說明多孔結(jié)構(gòu)、N摻雜和半導(dǎo)體復(fù)合,綜合改善了光催化性能。
[Abstract]:Graphite-phase carbon nitride nanocrystals are one of the most important materials in recent years. They have many excellent properties, such as the special flake structure similar to graphene, the band gap suitable for visible light absorption, and the metal-free properties.Very good stability shows potential application value in many aspects, but at the same time, due to the limitations of its own structure and properties, there are still some problems in the field of photocatalytic degradation that inhibit its application.For example, the whole absorption of sunlight is weak, photogenerated electrons and holes are easy to recombine, and nanochips are easy to reunite.The composition, structure, morphology and photocatalytic properties of the composites were measured by photocatalytic reaction apparatus and UV-Vis spectrophotometer.First of all, in the spinning solution system with PVP concentration of 12 wt% and containing Zn(Ac)_2, a small amount of g-C _ 3N _ 4 / S) was mixed by electrostatic mixing, and then the PVP / Zn / Zn / PVP / PVP / Zn / Zn / C _ 3 / C _ 3 / C _ 3N _ 4 / S composite fiber membrane was obtained by adding a small amount of g-C _ 3N _ 4 / S) into the spinning liquid system containing Zn(Ac)_2.Secondly, the PAN fiber membrane was prepared by electrostatic spinning method, and then the suspension drop immersion method was used to combine the high temperature carbonization process.The surface of the carbon fiber was successfully loaded with g-C _ 3N _ 4s). FTIR and XRD spectra showed that g-C _ 3N _ 4s) and C _ () were clearly observed on the surface of the C fiber by the SEM photos of g-C _ 3N _ 4s).The results of photocatalytic experiments showed that the C / g-C _ 3N _ 3N _ 4 / S composite fibers obtained at different carbonization temperatures had the strongest adsorption performance at 600 鈩,
本文編號:1696032
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1696032.html
最近更新
教材專著