長鏈脂肪酸在超臨界水中的水熱氣化反應研究
發(fā)布時間:2018-03-26 21:19
本文選題:超臨界水 切入點:水熱氣化 出處:《華東師范大學》2017年碩士論文
【摘要】:隨著世界人口的快速增長以及經(jīng)濟的高速發(fā)展,化石能源的開發(fā)程度和消費水平迅速增加。但化石能源不可再生,且其儲量十分有限。因此,轉變能源結構,研究利用新一代可再生、環(huán)境友好型能源是人類可持續(xù)發(fā)展所面臨的緊迫任務。生物質能源由于原料豐富、來源廣泛、生產(chǎn)操作工藝安全等特點,近年來被普遍認為是化石燃料的主要替代能源。脂質作為生物質中重要的組成部分,因其所占比例高、分布廣泛、熱值高,是目前新型生物質能源的研究熱點。相較于傳統(tǒng)的生物質工業(yè)轉化途徑(酶降解和熱裂解),通過水熱氣化法將其轉化為燃氣是一條方便快捷的路徑,不需要進行干燥、萃取等大量耗能且會導致污染的額外處理,綠色環(huán)保,獲得的燃氣熱值較高,具有良好的應用前景。本論文根據(jù)脂質在超臨界水中水解后的主要成分脂肪酸,選取了一系列模型化合物,采用自制的石英釜式生物質超臨界水氣化反應實驗裝置考察其超臨界水熱氣化過程,以期為脂質生物質的超臨界水熱氣化研究提供實驗數(shù)據(jù)參考及理論依據(jù)。本文的主要研究內如下:1.非催化條件下長鏈脂肪酸的超臨界水熱氣化反應研究以正十五酸為主要研究對象,正十四酸和油酸作為驗證。在不添加催化劑的情況下,各實驗因素對脂肪酸SCWG的影響順序為:反應溫度反應保留時間反應物質量分數(shù)。反應溫度的提升會生成更多的氣體組分,元素回收率及HHV也隨之上升;在一定的反應溫度和壓力下,反應保留時間的增加在絕大多數(shù)條件下使氣體產(chǎn)率、元素回收率和HHV隨之增加,但隨著保留時間的進一步增加,氣體產(chǎn)率、元素回收率和HHV增長幅度降低。隨著反應物質量分數(shù)的增加,脂肪酸超臨界水熱氣化(SCWG)的氣體產(chǎn)率、元素回收率和HHV有一定降低。C元素回收率在400-450 ℃較高,在所測整體溫度區(qū)間最高值為16.8%;H元素回收率在500-550℃較高,最高值為57.1%;HHV最高可達16.8kJ·kg-1,大約相當于標準煤熱值的57%。液相產(chǎn)物除了殘留未反應的脂肪酸以脂肪酸外以脫羧后的直鏈烴為主,同時含有部分芳香烴和高聚物。將氣體產(chǎn)物分布數(shù)據(jù)和液相產(chǎn)物的表征相結合,根據(jù)脂肪酸實際分解情況,探究了脂肪酸非催化超臨界水氣化四種重要中間反應受各反應因素的作用及其對反應結果的影響。2.催化條件下長鏈脂肪酸的超臨界水熱氣化反應研究考察了Pd/C、Pt/C、Rh/C和Ru/C四種催化劑對脂肪酸SCWG反應過程的影響,通過研究SCWG氣體產(chǎn)物的分布,發(fā)現(xiàn)Ru/C對脂肪酸催化SCWG反應的催化效果最佳,C元素回收率可達95.67%,H元素回收率可達135.73%;HHV最高可達36.38 kJ·g-1,大約相當于標準煤熱值的124%。實驗結果表明,四種催化劑催化的SCWG氣體總產(chǎn)率和C元素回收率均有上升;H元素回收率在Pd/C催化下基本不變,在其他三種催化劑下有較大程度的提升;HHV在Pd/C催化下略有下降,在其他三種催化劑的作用下有較大程度的提升。催化SCWG反應的脂肪酸基本完全轉化,只有極少量的殘留,直鏈飽和烴類為液相產(chǎn)物的主要成分;芳香烴和其他不飽和烴種類、濃度都有大幅降低。將氣體產(chǎn)物分布數(shù)據(jù)和液相產(chǎn)物的表征相結合,分析了催化劑對各產(chǎn)物含量變化的影響及可能的催化機理。
[Abstract]:With the rapid development of the rapid growth of the world's population and economy, fossil energy development and consumption level is increasing rapidly. But the fossil energy is non renewable, and its reserves are very limited. Therefore, change the energy structure, research on the use of a new generation of renewable, environmentally friendly energy source is the urgent task for the biomass of human sustainable development. Because of the energy rich raw materials, a wide range of sources, production operation process safety, in recent years is generally considered to be the main alternative to fossil fuels. As an important lipid in biomass components, because of its high proportion, wide distribution, high calorific value, is the focus of new biomass energy compared to the traditional way. Industrial conversion of biomass (enzymatic degradation and pyrolysis), transformed into gas is a convenient path through the water steaming method, without the need for drying, extraction etc. Additional, a lot of energy and can cause pollution, high calorific value of fuel gas is obtained, which has good application prospects. This paper is based on the main components of lipid hydrolysis in supercritical water after fatty acid, a series of model compounds were selected, using the self-made silica kettle type biomass gasification in supercritical water reaction experiment apparatus to investigate the supercritical hydrothermal gasification process, provide experimental data and theoretical basis for supercritical hydrothermal gasification of biomass in order to lipid. The main research work of this paper are as follows: 1. under the condition of non catalytic supercritical hydrothermal gasification of long chain fatty acids react with acid as the main research object is fifteen, is fourteen and acid verify. Without the addition of oleic acid as catalyst under the order of the effects of experimental factors on fatty acid SCWG as the reaction temperature and the reaction time of the reactant mass fraction of retained temperature. Ascension will generate more gas component elements, recovery and HHV also increased; in certain reaction temperature and pressure, increase the retention time of the reaction gas yield in most conditions, recovery rates and HHV increased, but with the further increase of retention time, gas yield, recovery rate and elements the growth rate of HHV decreased. With the increase of the mass fraction of the reactants, fatty acids in supercritical hydrothermal gasification (SCWG) gas yield, recovery rates and HHV have lower.C recovery rates at 400-450 degrees higher in the measured temperature range the highest value is 16.8%; the recovery rate of H elements in 500-550 degrees higher and the maximum value is 57.1%; HHV reached 16.8kJ / kg-1, roughly equivalent to standard coal calorific value of 57%. liquid products in addition to straight chain fatty acid residues of unreacted fatty acid by decarboxylation after, also contain some aromatic Characterization of hydrocarbons and polymers. The gas distribution data products and liquid products combined, according to the actual situation of the decomposition of fatty acids, fatty acid non catalytic supercritical water gasification of four kinds of important intermediate reaction by various reaction factors and its influence on the reaction results of long chain fatty acid catalyzed by.2. under the condition of supercritical hydrothermal gasification reaction of Pd/C, Pt/C, Rh/C and Ru/C of four kinds of catalysts on the fatty acids of SCWG process, the distribution of SCWG gas products, found that the catalytic effect of Ru/C on the catalytic reaction of fatty acid SCWG, C element recovery was 95.67%, H element recovery rate can reach up to 135.73% HHV; 36.38 kJ - g-1, roughly equivalent to standard coal calorific value of 124%.. The experimental results show that the total yield of SCWG gas and C four catalyst element recovery rate increased; H element recovery rate under the catalysis of Pd/C basic Change, have greatly improved in the other three kinds of catalyst; HHV decreased in the presence of Pd/C has greatly improved in the other three kinds of catalyst. Fatty acid catalyzed SCWG reaction of the basic conversion, only a very small amount of residues, straight chain saturated hydrocarbons as the main composition of the liquid products; aromatic hydrocarbons and other unsaturated hydrocarbon types, concentrations were significantly reduced. The characterization of product gas and liquid product distribution data combined with the analysis of the effect of catalyst on the content changes of each product and the possible mechanism of catalysis.
【學位授予單位】:華東師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TK6;TQ645.6
【參考文獻】
相關期刊論文 前8條
1 鄧衛(wèi)平;張宏喜;薛來奇;張慶紅;王野;;木質纖維素中C O鍵選擇性活化和高效轉化制化學品(英文)[J];催化學報;2015年09期
2 武小芬;陳亮;陳靜萍;蘇小軍;王克勤;;木質纖維素類生物質轉化為燃料乙醇關鍵技術研究現(xiàn)狀[J];湖南農(nóng)業(yè)科學;2013年23期
3 李志豪;桂鋒;張曉婷;潘思慧;李國棟;諶凡更;;植物纖維組分在聚氨酯中的應用[J];纖維素科學與技術;2013年03期
4 姚國欣;王建明;;第二代和第三代生物燃料發(fā)展現(xiàn)狀及啟示[J];中外能源;2010年09期
5 劉潤生;;美國先進生物燃料技術政策與態(tài)勢分析[J];中國生物工程雜志;2010年01期
6 匡廷云;白克智;楊秀山;;我國生物質能發(fā)展戰(zhàn)略的幾點意見[J];化學進展;2007年Z2期
7 譚洪;王樹榮;駱仲泱;岑可法;;生物質三組分熱裂解行為的對比研究[J];燃料化學學報;2006年01期
8 姚福生,易維明,柏雪源,何芳,李永軍;生物質快速熱解液化技術[J];中國工程科學;2001年04期
,本文編號:1669648
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1669648.html
最近更新
教材專著