石西油田石炭系火山巖儲(chǔ)層及流體識(shí)別研究
本文選題:四性關(guān)系 切入點(diǎn):流體識(shí)別 出處:《西南石油大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本論文在利用前人對(duì)石西油田石炭系火山巖油藏研究成果的基礎(chǔ)上,結(jié)合鉆井、測(cè)井、錄井、巖心分析測(cè)試及試油等資料,運(yùn)用地球物理技術(shù)和地質(zhì)方法,通過(guò)多種手段、多學(xué)科交叉分析,來(lái)開(kāi)展石西油田石炭系儲(chǔ)層及流體識(shí)別研究。石西油田石炭系火山巖劃分為爆發(fā)相和溢流相,其中以溢流相為主。巖性以條帶狀熔巖、集塊巖、角礫熔巖、致密凝灰?guī)r為主;儲(chǔ)集空間類型以基質(zhì)溶孔、縫內(nèi)充填物溶孔、氣孔充填物溶孔、角礫間溶孔等為主,屬于中-高孔低滲非均質(zhì)性強(qiáng)的裂縫-孔隙型儲(chǔ)層。儲(chǔ)層四性關(guān)系分析,儲(chǔ)層物性與巖性的相關(guān)性較好,其中集塊巖和角礫熔巖的物性比較好,具有較高的孔隙度和滲透率,而條帶狀熔巖具有較高孔隙度和較低滲透率;含油級(jí)別為熒光顯示,測(cè)井曲線中電阻率隨含油性增加而增大;自然電位在有油氣顯示正差異;風(fēng)化粘土層的自然電位表現(xiàn)為負(fù)異常,電阻率低值基線,無(wú)油氣顯示。運(yùn)用五種方法判別儲(chǔ)層流體性質(zhì),其中電阻率與孔隙度交會(huì)法識(shí)別油、水層和干層最好,符合率為80%;正態(tài)概率分布法和Rt/Rxo與Rt交會(huì)法對(duì)于油層和水層識(shí)別較好,符合率為63.63%;孔隙度測(cè)井曲線重疊法對(duì)干層和水層識(shí)別較好;深淺電阻率差異識(shí)別法受多種因素影響,難以把握好。儲(chǔ)層參數(shù)測(cè)井解釋模型和流體識(shí)別圖版,可知孔隙度的下限值為9%,滲透率為下限值0.2mD,含油飽和度下限為45%。綜上所述,基于對(duì)研究區(qū)火山巖儲(chǔ)層物性特征、四性關(guān)系、儲(chǔ)層參數(shù)模型、物性下限、單井流體識(shí)別,油層連井對(duì)比剖面的研究,結(jié)合生產(chǎn)動(dòng)態(tài)資料分析,油層主要分布在巖相B段。平面油層厚度和剩余可采儲(chǔ)量等值線圖分析,單井油氣富集區(qū)產(chǎn)能大于1O×104t 的井主要是 SH1031、SH1026、SH1037、SH1106、SHW10 等井周邊范圍內(nèi);產(chǎn)能分布在小于10×104t區(qū)間的井有SH1041、SH1020、SH1009、SH1035等井周邊范圍內(nèi)。油氣主要集中在SH1034-SH1035-SH1040-SH1041以東的區(qū)域,最終優(yōu)選SH1040井和SH1031井一帶為進(jìn)一步挖潛的有利區(qū),SH1025井和SH1037井可補(bǔ)射孔。
[Abstract]:On the basis of previous researches on Carboniferous volcanic reservoirs in Shixi Oilfield, combined with the data of drilling, logging, logging, core analysis, testing and production testing, this paper applies geophysical techniques and geological methods through a variety of means. In order to carry out the study of Carboniferous reservoir and fluid identification in Shixi Oilfield, Carboniferous volcanic rocks in Shixi Oilfield are divided into explosive facies and overflow facies, in which the overflow facies is dominant. The lithology is zonal lava, agglomerate rock, breccia lava. Dense tuff is the main type of reservoir space, and the reservoir space types are matrix dissolved pore, filling dissolved pore in fracture, pore filling dissolved pore, dissolved pore between breccia and so on, which belong to fracture-pore type reservoir with strong heterogeneity of medium-high porosity and low permeability. The correlation between reservoir physical property and lithology is good, among which the mass rock and breccia lava have better physical properties, and have higher porosity and permeability, while strip lava has higher porosity and lower permeability, and the oil-bearing grade is fluorescent. The resistivity of logging curve increases with the increase of oil content, the natural potential shows positive difference in oil and gas, the natural potential of weathered clay layer shows negative anomaly, and the low resistivity baseline, Non-oil-gas display. Five methods are used to identify reservoir fluid properties, in which the resistivity and porosity intersection method is used to identify the oil, the water and dry layers are the best, the coincidence ratio is 80, and the normal probability distribution method and Rt/Rxo and RT intersection method are better for the identification of the reservoir and the water layer. The coincidence rate is 63.63; the porosity logging curve overlap method is better for identifying dry and water layers; the depth and shallow resistivity differential identification method is affected by many factors, so it is difficult to grasp well. Reservoir parameter logging interpretation model and fluid identification chart, It can be seen that the lower limit of porosity is 9, the permeability is 0.2mD, the lower limit of oil saturation is 450.In summary, based on the physical properties of volcanic reservoir in the study area, the relationship between four properties, the model of reservoir parameters, the lower limit of physical property, and the identification of single well fluid, The study of the correlation profile of the reservoir and the analysis of the production dynamic data show that the reservoir is mainly distributed in the lithofacies B section, and the plane reservoir thickness and the contour map of the remaining recoverable reserves are analyzed. The wells with productivity greater than 10 脳 104t in single well oil and gas accumulation area are mainly within the peripheral range of SH1031H1026 SH1037SHH106HW10, and the wells with productivity less than 10 脳 104t are located in the periphery of SH1041 H1020H1020H1009SH1035 and so on. The oil and gas are mainly concentrated in the area east of SH1034-SH1035-SH1040-SH1041, and the oil and gas are mainly located in the area east of SH1034-SH1035-SH1040-SH1041, and the oil and gas are mainly distributed in the vicinity of SH1041, SH1020, SH1009, SH1035 and so on. Finally, SH1040 well and SH1031 well are selected as favorable areas for further tapping potential. Well SH1025 and SH1037 well can make up perforation.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P618.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 牛寶童;李導(dǎo);胡曉麗;;流體識(shí)別因子提取中C的取值[J];內(nèi)蒙古石油化工;2009年08期
2 賀振華;王棟;;擴(kuò)展流體識(shí)別因子及應(yīng)用[J];礦物巖石;2009年04期
3 許平;文曉濤;雷芬麗;賀振華;;高靈敏度流體識(shí)別因子研究[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版)理工卷;2010年03期
4 李楊;賀振華;黃德濟(jì);程剛建;宋洪勇;;流體識(shí)別因子試驗(yàn)分析及應(yīng)用[J];石油物探;2010年06期
5 寧忠華;賀振華;黃德濟(jì);;基于地震資料的高靈敏度流體識(shí)別因子[J];石油物探;2006年03期
6 許輝群;桂志先;曾勇;;噪音背景下流體識(shí)別應(yīng)用方法探討[J];科學(xué)技術(shù)與工程;2013年18期
7 孔康樂(lè);趙澎度;孟燕;;流體識(shí)別因子研究[J];中國(guó)石油和化工標(biāo)準(zhǔn)與質(zhì)量;2013年10期
8 許平;雷芬麗;文曉濤;賀振華;;碳酸鹽巖儲(chǔ)層流體識(shí)別因子分析[J];油氣地球物理;2010年04期
9 江偉;;墾71地區(qū)多波屬性與流體識(shí)別的研究及應(yīng)用[J];油氣地球物理;2009年04期
10 王磊;王智偉;石亮亮;唐偉;張玲;劉冰;;地層測(cè)試器流體識(shí)別模塊流體筒數(shù)值模擬[J];石油化工應(yīng)用;2012年02期
相關(guān)會(huì)議論文 前4條
1 賀振華;王棟;黃德濟(jì);;擴(kuò)展流體識(shí)別因子及應(yīng)用[A];中國(guó)地球物理·2009[C];2009年
2 肖立志;;核磁共振在地層流體識(shí)別和定量評(píng)價(jià)中的應(yīng)用研究[A];第十二屆全國(guó)波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2002年
3 張大海;謝月芳;;同時(shí)反演對(duì)巖性和流體識(shí)別的應(yīng)用[A];加強(qiáng)地質(zhì)工作促進(jìn)社會(huì)經(jīng)濟(jì)和諧發(fā)展——2007年華東六省一市地學(xué)科技論壇論文集[C];2007年
4 肖麗;范曉敏;馬宏宇;;GR-RD交會(huì)圖法在碳酸鹽巖儲(chǔ)層流體識(shí)別中的應(yīng)用研究[A];中國(guó)地球物理學(xué)會(huì)第22屆年會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前4條
1 鄒文;基于地震資料的流體識(shí)別技術(shù)研究[D];成都理工大學(xué);2008年
2 郝前勇;巖石彈性參數(shù)反演與流體識(shí)別方法與應(yīng)用[D];中國(guó)石油大學(xué)(華東);2013年
3 李鵬舉;核磁共振T2譜反演及流體識(shí)別評(píng)價(jià)方法研究[D];東北石油大學(xué);2010年
4 倪根生;致密氣藏的儲(chǔ)層特征與流體識(shí)別[D];成都理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 許迪;基于疊前數(shù)據(jù)反演的流體識(shí)別新方法[D];成都理工大學(xué);2015年
2 郭越;碳酸鹽巖儲(chǔ)層測(cè)井流體識(shí)別方法研究[D];中國(guó)地質(zhì)大學(xué)(北京);2013年
3 王學(xué)才;古龍南地區(qū)古693、大146區(qū)塊流體識(shí)別方法研究[D];東北石油大學(xué);2016年
4 毛凱蘭;石西油田石炭系火山巖儲(chǔ)層及流體識(shí)別研究[D];西南石油大學(xué);2017年
5 沈洪濤;基于縱波資料的流體識(shí)別[D];成都理工大學(xué);2007年
6 李國(guó)福;多參數(shù)儲(chǔ)層預(yù)測(cè)及流體識(shí)別方法研究[D];成都理工大學(xué);2011年
7 江偉;多參數(shù)流體識(shí)別方法及應(yīng)用研究[D];成都理工大學(xué);2010年
8 蓋海洋;基于巖石物理的流體識(shí)別研究[D];中國(guó)石油大學(xué);2009年
9 王棟;AVO分析與流體識(shí)別[D];成都理工大學(xué);2009年
10 富會(huì);查48區(qū)塊高臺(tái)子油層流體識(shí)別方法[D];東北石油大學(xué);2014年
,本文編號(hào):1581985
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1581985.html