鋼薄板復(fù)合熱源攪拌摩擦焊溫度場(chǎng)及應(yīng)力變形數(shù)值模擬
本文選題:復(fù)合熱源 切入點(diǎn):高熔點(diǎn)材料 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著焊接技術(shù)的不斷發(fā)展,"綠色焊接"的理念被提出,如何減少焊接過(guò)程中的弧光、粉塵、噪音等有害物質(zhì),降低對(duì)操作人員身體的傷害,成為該理念重要研究?jī)?nèi)容。攪拌摩擦焊(FSW)正是在這一時(shí)期從發(fā)明到廣泛應(yīng)用迅速發(fā)展起來(lái),攪拌摩擦焊接過(guò)程中沒有電弧、粉塵顆粒和有毒臭氧及氮化物等傳統(tǒng)熔化焊的缺點(diǎn),且此焊接方法為固相連接,避免了金屬熔化再凝固帶來(lái)的硬質(zhì)相缺陷。目前FSW主要應(yīng)用于鋁、鎂等低熔點(diǎn)合金,而在高熔點(diǎn)金屬材料方面的實(shí)際工程應(yīng)用幾乎沒有。為拓展攪拌摩擦焊在高熔點(diǎn)材料方面的應(yīng)用,本文針對(duì)高熔點(diǎn)材料Q235A鋼薄板復(fù)合熱源攪拌摩擦焊展開數(shù)值模擬計(jì)算的研究,具體內(nèi)容如下:(1)針對(duì)無(wú)針光軸肩攪拌頭的攪拌摩擦機(jī)理,提出中心到邊緣熱輸入非線性增大的反高斯攪拌摩擦焊熱源模型。利用有限元分析軟件ANSYS對(duì)TIG電弧+攪拌摩擦焊+底部預(yù)熱復(fù)合熱源高熔點(diǎn)材料鋼薄板對(duì)接焊先進(jìn)行溫度場(chǎng)的熱分析計(jì)算,得出焊接中溫度全過(guò)程。利用自主設(shè)計(jì)的熱電偶測(cè)溫系統(tǒng)測(cè)量工件上特征點(diǎn)的熱循環(huán)曲線,并與模擬值曲線進(jìn)行對(duì)比,擬合程度非常高,驗(yàn)證了熱源模型與散熱條件處理的正確性。(2)利用順序(間接)耦合方法將熱分析結(jié)果通過(guò)載荷形式施加到結(jié)構(gòu)求解計(jì)算中,求解計(jì)算高熔點(diǎn)材料鋼薄板復(fù)合熱源焊接過(guò)程中的應(yīng)力變化與殘余應(yīng)力分布,得到焊接過(guò)程應(yīng)力變化的規(guī)律。通過(guò)熱彈塑性法計(jì)算出薄板的焊后變形量,利用百分表測(cè)量出對(duì)接板的相對(duì)變形量,對(duì)比試驗(yàn)變形測(cè)量值基本吻合,驗(yàn)證了結(jié)構(gòu)計(jì)算方式與約束載荷的正確。(3)通過(guò)單因素變化試驗(yàn)對(duì)比與正交模擬試驗(yàn)的方法,分析了不同焊接工藝參數(shù)對(duì)高熔點(diǎn)材料鋼薄板復(fù)合熱源焊接過(guò)程中焊縫溫度變化影響規(guī)律和程度,研究表明:工藝參數(shù)的變化使得焊縫上峰值溫度出現(xiàn)整體上升或下降趨勢(shì),且各因素對(duì)焊接溫度的影響程度大小排列為焊接速度TIG電弧焊電流攪拌頭轉(zhuǎn)速。
[Abstract]:With the continuous development of welding technology, the concept of "green welding" has been put forward, how to reduce the arc, dust, noise and other harmful substances in the welding process, and reduce the damage to the operator's body. It is in this period that FSW has developed rapidly from its invention to its wide application. In the process of FSW, there is no arc, dust particles, toxic ozone, nitride and other shortcomings of traditional fusion welding. This welding method is solid phase bonding, which avoids the hard phase defect caused by melting and solidification. At present, FSW is mainly used in low melting point alloys such as aluminum, magnesium, etc. In order to expand the application of friction stir welding in high melting point material, the numerical simulation of high melting point material Q235A steel sheet composite heat source friction stir welding is carried out in this paper. The specific contents are as follows: 1) the friction mechanism of the shoulder stir head without a needle, A heat source model of anti-#china_person0# friction stir welding with nonlinear heat input from center to edge is proposed. The heat source of high melting point steel sheet with preheated composite heat source at the bottom of TIG arc friction stir welding is first welded by finite element analysis software ANSYS. Thermal analysis and calculation of the temperature field, The whole process of welding temperature is obtained. The characteristic point thermal cycle curve of workpiece is measured by the self-designed thermocouple temperature measuring system, and compared with the simulated value curve, the fitting degree is very high. The correctness of heat source model and heat dissipation condition treatment is verified. The sequential (indirect) coupling method is used to apply the results of thermal analysis to the structural solution by means of load form. The stress variation and residual stress distribution in the welding process of high melting point steel sheet are calculated, and the variation of stress in welding process is obtained. The deformation of the plate after welding is calculated by thermoelastic-plastic method. The relative deformation of the butt plate is measured by using the percentile, and the measured value of the deformation in the contrast test is basically consistent, which verifies that the calculation method of the structure is correct and the constraint load is correct. The method of comparing the single factor variation test with the orthogonal simulation test is verified. The influence of different welding process parameters on weld temperature variation during welding of high melting point steel sheet with composite heat source is analyzed. The results show that the peak temperature of weld increases or decreases with the change of process parameters. The influence of various factors on welding temperature is arranged as welding speed, TIG arc welding current stirring head speed.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG453.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 賀地求;李劍;李東輝;梁健章;;鋁合金超聲攪拌復(fù)合焊接[J];焊接學(xué)報(bào);2011年12期
2 Woong-Seong Chang;S.R.Rajesh;Chang-Keun Chun;Heung-Ju Kim;;Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy[J];Journal of Materials Science & Technology;2011年03期
3 鄢東洋;史清宇;吳愛萍;Juergen Silvanus;劉園;張?jiān)隼?;鋁合金薄板攪拌摩擦焊接殘余變形的數(shù)值分析[J];金屬學(xué)報(bào);2009年02期
4 夏春;邢麗;柯黎明;張彥富;;攪拌摩擦焊熱源數(shù)值模型[J];熱加工工藝;2008年19期
5 李紅克;史清宇;王鑫;李亭;;鋁合金平板攪拌摩擦焊接應(yīng)力變形分析[J];焊接學(xué)報(bào);2008年02期
6 張昭;張洪武;;攪拌摩擦焊接中材料變形及殘余應(yīng)力分析[J];兵器材料科學(xué)與工程;2006年03期
7 柴鵬;欒國(guó)紅;郭德倫;李菊;;FSW接頭殘余應(yīng)力分布及控制技術(shù)[J];焊接學(xué)報(bào);2005年11期
8 張洪武,張昭,陳金濤;攪拌摩擦焊接過(guò)程的有限元模擬[J];焊接學(xué)報(bào);2005年09期
9 趙衍華,林三寶,賀紫秋,吳林;二維攪拌摩擦焊接過(guò)程的數(shù)值模擬[J];中國(guó)有色金屬學(xué)報(bào);2005年06期
10 王大勇,馮吉才,王攀峰;攪拌摩擦焊接熱輸入數(shù)值模型[J];焊接學(xué)報(bào);2005年03期
,本文編號(hào):1566435
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1566435.html