無(wú)源變色錨桿軸力監(jiān)測(cè)裝置的設(shè)計(jì)與研究
本文關(guān)鍵詞: 錨桿軸力 光學(xué)法 變色 監(jiān)測(cè) 出處:《太原理工大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:本文旨在研究一種結(jié)構(gòu)簡(jiǎn)單、成本低廉、安裝方便、不會(huì)損害錨桿錨固質(zhì)量、適合大規(guī)模安裝且監(jiān)測(cè)方便的錨桿軸力監(jiān)測(cè)裝置。錨桿支護(hù)技術(shù)在錨固工程中可以加固、組合和聯(lián)接圍巖,提高圍巖的自身強(qiáng)度和自我穩(wěn)定能力,在煤礦、水電、冶金和隧道等工程領(lǐng)域得到廣泛應(yīng)用。但是隨著時(shí)間推移,錨桿在惡劣的工作環(huán)境中時(shí)常受到地下水腐蝕、鄰區(qū)采礦擾動(dòng)和圍巖應(yīng)力變化等因素的影響,導(dǎo)致錨桿所受應(yīng)力增加。一旦錨桿所受應(yīng)力達(dá)到或超過(guò)其強(qiáng)度極限就會(huì)導(dǎo)致錨桿的斷裂和錨固工程的失效,給巖土錨固工程造成嚴(yán)重的安全事故隱患。為了維護(hù)工程穩(wěn)定和保證施工安全,必須對(duì)錨桿軸力進(jìn)行監(jiān)測(cè)。因此,研究錨桿軸力監(jiān)測(cè)裝置具有顯著的社會(huì)經(jīng)濟(jì)效益和意義重大的科研實(shí)用價(jià)值。然而,現(xiàn)有的錨桿軸力監(jiān)測(cè)裝置研究成果仍存在著需要電源供電或液壓密封,難以防水防爆、可靠性差、制造成本高、安全管理復(fù)雜等諸多缺點(diǎn),難以實(shí)現(xiàn)對(duì)錨桿錨固工程進(jìn)行長(zhǎng)期有效的準(zhǔn)確監(jiān)測(cè)。在分析研究現(xiàn)有錨桿軸力監(jiān)測(cè)裝置的研究成果的基礎(chǔ)上,根據(jù)實(shí)踐經(jīng)驗(yàn),針對(duì)目前錨桿軸力監(jiān)測(cè)裝置的不足提出了一種新型的錨桿軸力無(wú)損監(jiān)測(cè)方法,將基于等厚干涉原理的光學(xué)干涉法創(chuàng)新性的應(yīng)用到錨桿軸力監(jiān)測(cè)中來(lái),并設(shè)計(jì)了相關(guān)監(jiān)測(cè)裝置。通過(guò)分析研究,確定該監(jiān)測(cè)裝置由上蓋板、彈性墊、下蓋板、承載體和光學(xué)膜等部件組成。監(jiān)測(cè)裝置在錨桿軸力作用下,光學(xué)膜會(huì)發(fā)生微小變形。監(jiān)測(cè)裝置所受載荷不同,光學(xué)膜的變形量不同,在白色光源的垂直照射下,光學(xué)膜會(huì)產(chǎn)生不同的干涉圖案顏色,通過(guò)不同的干涉圖案顏色判斷錨桿力的大小。首先,通過(guò)對(duì)拉力型錨桿的受力分析得出錨桿剪應(yīng)力與軸應(yīng)力的分布規(guī)律,選定了所監(jiān)測(cè)錨桿型號(hào),確定了監(jiān)測(cè)裝置的安裝位置并定義了錨桿三種不同的受力狀態(tài)。然后通過(guò)分析錨桿在錨固工程中的受力分布特點(diǎn)、監(jiān)測(cè)裝置的實(shí)際應(yīng)用場(chǎng)景及在安裝和使用中的受力情況,依據(jù)監(jiān)測(cè)裝置各部件的作用和工作原理分別討論確定了監(jiān)測(cè)裝置各部件的材料選擇、結(jié)構(gòu)設(shè)計(jì)和尺寸選擇,并利用ANSYS軟件對(duì)上蓋板、下蓋板和承載體等結(jié)構(gòu)進(jìn)行了強(qiáng)度分析,以保證監(jiān)測(cè)裝置在監(jiān)測(cè)范圍內(nèi)安全可靠。然后,針對(duì)監(jiān)測(cè)裝置的監(jiān)測(cè)方法對(duì)光學(xué)干涉原理和光學(xué)膜的變形理論進(jìn)行了相關(guān)公式推導(dǎo),并編寫(xiě)了基于MATLAB的光學(xué)膜變形程序和光學(xué)膜仿真干涉程序。介紹了干涉圖案顏色顯示方法,并利用ANSYS有限元分析和MATLAB軟件對(duì)光學(xué)膜的干涉圖案進(jìn)行了仿真分析。仿真分析結(jié)果顯示,在監(jiān)測(cè)范圍內(nèi)三種設(shè)定受力狀態(tài)下錨桿軸力監(jiān)測(cè)裝置光學(xué)膜的干涉圖案變化了三種顏色,可以通過(guò)不同的顏色判斷錨桿的受力狀態(tài),證明了該監(jiān)測(cè)裝置的可行性。
[Abstract]:The purpose of this paper is to study a kind of bolt axial force monitoring device, which is simple in structure, low in cost, convenient in installation, and not harmful to anchoring quality, and suitable for large-scale installation and convenient monitoring. The combination and connection of surrounding rocks to improve their own strength and self-stabilization ability are widely used in coal mine, hydropower, metallurgy and tunnel engineering fields. But over time, The anchor rod is often affected by underground water corrosion, mining disturbance and stress change of surrounding rock in the bad working environment. Cause the stress of the bolt to increase. Once the stress of the bolt reaches or exceeds its strength limit, it will lead to the fracture of the anchor and the failure of the anchoring project. In order to maintain the stability of the project and ensure the construction safety, the axial force of the anchor rod must be monitored. The research of anchor axial force monitoring device has significant social and economic benefits and great scientific and practical value. However, the existing research results of anchor axial force monitoring device still need power supply or hydraulic seal, so it is difficult to waterproof and explosion proof. Many shortcomings, such as poor reliability, high manufacturing cost, complex safety management and so on, make it difficult to carry out long-term and effective monitoring of anchoring engineering. According to the practical experience, a new nondestructive monitoring method of anchor axial force is put forward, which is based on the principle of equal thickness interference, and the optical interference method based on equal thickness interference principle is innovatively applied to the monitoring of anchor axial force. Through analysis and research, it is determined that the monitoring device is composed of upper cover plate, elastic pad, lower cover plate, bearing body and optical film, etc. The monitoring device is under the action of anchor rod axial force, and the monitoring device is composed of the upper cover plate, the elastic pad, the lower cover plate, the bearing body and the optical film, etc. The optical film will deform slightly. The deformation of the optical film varies with the load on the monitoring device, and the optical film will produce different interference pattern colors under the vertical irradiation of the white light source. First of all, the distribution of shear stress and axial stress of anchor rod is obtained by analyzing the force of tension type anchor, and the type of anchor is selected. The installation position of the monitoring device is determined and three different stress states of the anchor rod are defined. Then, through the analysis of the stress distribution characteristics of the anchor rod in the anchoring project, the practical application scene of the monitoring device and the stress situation in the installation and use of the monitoring device are analyzed. According to the function and working principle of each component of the monitoring device, the material selection, structure design and size selection of each component of the monitoring device are discussed, and the strength analysis of the upper cover plate, the lower cover plate and the bearing body is carried out by using ANSYS software. In order to ensure the safety and reliability of the monitoring device in the monitoring range, the principle of optical interference and the deformation theory of optical film are deduced according to the monitoring method of the monitoring device. The optical film deformation program and the optical film simulation interference program based on MATLAB are compiled, and the color display method of the interference pattern is introduced. The interference pattern of optical film is simulated by ANSYS finite element analysis and MATLAB software. The interference pattern of optical film has changed three colors under three kinds of fixed force state in the monitoring range. The force state of anchor can be judged by different colors, and the feasibility of the monitoring device is proved.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD353.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張國(guó)華;郝傳波;于會(huì)軍;許元華;;復(fù)合頂板回采巷道災(zāi)后的垮塌狀態(tài)[J];黑龍江科技大學(xué)學(xué)報(bào);2014年01期
2 劉青康;;錨桿軸力無(wú)損檢測(cè)裝置的研究與設(shè)計(jì)[J];機(jī)械工程與自動(dòng)化;2012年04期
3 ;Stress wave propagation in supporting bolts:A test for bolt support quality[J];International Journal of Mining Science and Technology;2012年04期
4 ;A novel durable intelligent fiber reinforced polymer anchor with embedded optical fiber Bragg grating sensors[J];Science China(Technological Sciences);2012年05期
5 劉程鋮;張宇;;隧道圍巖穩(wěn)定性及錨注支護(hù)方式研究[J];科技信息;2010年07期
6 楊天春;吳燕清;夏代林;;基于相位推算法的錨桿施工質(zhì)量無(wú)損檢測(cè)分析方法[J];煤炭學(xué)報(bào);2009年05期
7 藍(lán)海江;;基于Matlab的七色光仿真白光干涉與衍射實(shí)驗(yàn)[J];軟件導(dǎo)刊;2009年02期
8 李毅;柴敬;邱標(biāo);;新型光纖光柵錨桿測(cè)力計(jì)及應(yīng)用[J];礦業(yè)研究與開(kāi)發(fā);2009年01期
9 李毅;柴敬;邱標(biāo);;光纖光柵傳感技術(shù)在錨桿測(cè)力計(jì)上的應(yīng)用[J];煤礦安全;2009年02期
10 吳曙光;張永興;康明;;壓力型和拉力型錨桿工作性能對(duì)比研究[J];水文地質(zhì)工程地質(zhì);2008年05期
,本文編號(hào):1555729
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1555729.html