方便面桶包裝缺陷的視覺檢測(cè)技術(shù)研究
本文關(guān)鍵詞: 方便面 桶式包裝 缺陷檢測(cè) 檢測(cè)軟件 出處:《哈爾濱商業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:桶式方便面的包裝過(guò)程中紙質(zhì)方便面桶,會(huì)在流水生產(chǎn)線上經(jīng)過(guò)投送、放入面餅、放入料包、壓貼頂蓋、壓貼表面包裝、塑皮封裝等多道工序。在多步流水作業(yè)過(guò)程中,因?yàn)槭芰蛿[放位置等誤差,難免出現(xiàn)桶體發(fā)生形變、桶底出現(xiàn)穿孔、桶底沾染臟物等包裝缺陷,這種包裝質(zhì)量問題如果無(wú)法有效避免,不僅將大大影響消費(fèi)者的利益,也會(huì)影響到方便面生產(chǎn)商的經(jīng)濟(jì)利益。對(duì)于方便面桶式包裝的缺陷檢測(cè),視覺檢測(cè)系統(tǒng)以攝像機(jī)為核心傳感器,進(jìn)而以圖像處理、模式識(shí)別等算法為核心軟件技術(shù),可以有效地完成方便面桶的缺陷檢測(cè)。視覺檢測(cè)屬于典型的非接觸測(cè)量,不會(huì)對(duì)方便面桶造成二次破壞;圖像處理和模式識(shí)別等算法,以軟件的方式完成對(duì)包裝缺陷的檢測(cè),可以大大提高檢測(cè)實(shí)時(shí)性和檢測(cè)效率。本文開展的研究工作如下,第一,對(duì)大桶、小桶兩類方便面桶進(jìn)行了圖像層面的描述,進(jìn)而分析了其可能出現(xiàn)的五類缺陷,并確定本文以桶身變形、接縫缺陷、桶底破損、桶底臟污四類缺陷為主要檢測(cè)對(duì)象。構(gòu)建了方便面桶包裝缺陷視覺檢測(cè)的硬件系統(tǒng),設(shè)計(jì)了方便面桶包裝缺陷視覺檢測(cè)的軟件方案。第二,針對(duì)方便面桶包裝中的桶身變形缺陷和接縫缺陷的視覺檢測(cè)方法進(jìn)行了研究。對(duì)檢測(cè)過(guò)程中的灰度化處理、二值化處理等基本算法進(jìn)行了闡述。構(gòu)建了一種基于鏈碼表格的輪廓跟蹤方法。第三,針對(duì)方便面桶包裝桶底的臟污缺陷和破損缺陷展開了視覺檢測(cè)研究。構(gòu)建了一種三階段的預(yù)處理方法,包括均值濾波、Gauss濾波、Laplace銳化。對(duì)形態(tài)學(xué)方法進(jìn)行改進(jìn),應(yīng)用于帶有臟污缺陷的桶底圖像檢測(cè)。對(duì)比了三種邊緣檢測(cè)方法,選取Canny邊緣檢測(cè)方法,應(yīng)用于出現(xiàn)破損缺陷的桶底圖像檢測(cè)。第四,設(shè)計(jì)了方便面桶式包裝缺陷檢測(cè)軟件。在檢測(cè)軟件界面下,對(duì)基本功能和四類缺陷檢測(cè)功能進(jìn)行了展示。之后,從檢測(cè)時(shí)間和檢測(cè)精度兩個(gè)角度,對(duì)缺陷檢測(cè)軟件進(jìn)行了性能分析。
[Abstract]:In the packaging process of barrel instant noodle, the paper instant noodle barrel will be delivered on income production line, put into flour cake, put in material bag, press top cover, press surface packaging, plastic skin package, and so on. In the process of multi-step flow, Due to the errors of force and placement, it is inevitable that the barrel body will deform, the bottom of the barrel will be perforated, the bottom of the barrel will be contaminated with dirty materials and other packaging defects. If this kind of packaging quality problem cannot be effectively avoided, it will not only greatly affect the interests of consumers. It will also affect the economic benefits of instant noodle manufacturers. For the defect detection of instant noodle barrel packaging, the visual inspection system takes the camera as the core sensor, and then takes the image processing, pattern recognition and other algorithms as the core software technology. Visual inspection is a typical non-contact measurement, and it will not cause secondary damage to the instant noodle barrel. Image processing and pattern recognition algorithms, such as image processing and pattern recognition, can be used to detect packaging defects by software. The research work in this paper is as follows: firstly, the image level description of two kinds of instant noodle bucket is given, and the five possible defects are analyzed. It is determined that the main detection objects in this paper are four kinds of defects, such as barrel body deformation, joint defects, bucket bottom breakage, and bucket bottom fouling. A hardware system for visual inspection of instant noodle barrel packaging defects is constructed. The software scheme of visual inspection of instant noodle barrel packaging defect is designed. Secondly, the visual detection method of barrel body deformation defect and joint defect in instant noodle barrel packaging is studied. The basic algorithms such as binary processing are described. A method of contour tracking based on chain code table is constructed. Third, The visual detection of dirty and damaged defects on the bottom of instant noodle barrel was studied. A three-stage pretreatment method was constructed, including the mean filtering Gauss filter Laplace sharpening. The morphological method was improved. This paper compares three edge detection methods, selects the Canny edge detection method, and applies it to the bucket bottom image detection with damaged defects. 4th, In this paper, the software for detecting the defect of instant noodle barrel packaging is designed. The basic function and the four kinds of defect detection function are demonstrated under the software interface. After that, the detection time and precision are analyzed. The performance of defect detection software is analyzed.
【學(xué)位授予單位】:哈爾濱商業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TS206;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張建明;李雨朋;;基于模糊判決改進(jìn)的Otsu圖像分割算法[J];微電子學(xué)與計(jì)算機(jī);2014年06期
2 陳國(guó)棟;孫榮川;任子武;王振華;孫立寧;;一種基于形狀信息描述的圖像特征匹配算法[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年S2期
3 倪麟;龔劬;曹莉;廖武忠;;基于自適應(yīng)加權(quán)中值濾波的二維Otsu圖像分割算法[J];計(jì)算機(jī)應(yīng)用研究;2013年02期
4 趙宇峰;高超;王建國(guó);;基于機(jī)器視覺的工業(yè)產(chǎn)品表面缺陷檢測(cè)算法研究[J];計(jì)算機(jī)應(yīng)用與軟件;2012年02期
5 李曉舟;于化東;于占江;劉巖;許金凱;;微小尺寸零件表面缺陷光學(xué)檢測(cè)方法[J];兵工學(xué)報(bào);2011年07期
6 賈其;呂緒良;吳超;唐厚超;;人眼視覺注意機(jī)制用于偽裝效果評(píng)價(jià)[J];應(yīng)用科學(xué)學(xué)報(bào);2011年03期
7 叢家慧;顏云輝;;視覺注意機(jī)制在帶鋼表面缺陷檢測(cè)中的應(yīng)用[J];中國(guó)機(jī)械工程;2011年10期
8 楊小剛;;圖像二值化方法在CCD圖像信息處理中的研究[J];邢臺(tái)職業(yè)技術(shù)學(xué)院學(xué)報(bào);2011年01期
9 陳琪;熊博蒞;陸軍;匡綱要;;改進(jìn)的二維Otsu圖像分割方法及其快速實(shí)現(xiàn)[J];電子與信息學(xué)報(bào);2010年05期
10 劉賢喜;李邦明;蘇慶堂;劉中合;王玉亮;楊峰;;一種新的二值圖像連通區(qū)域準(zhǔn)確標(biāo)記算法[J];計(jì)算機(jī)工程與應(yīng)用;2007年22期
相關(guān)碩士學(xué)位論文 前4條
1 任璐;基于視覺注意機(jī)制的數(shù)字水印技術(shù)研究[D];西安電子科技大學(xué);2011年
2 張揚(yáng);基于圖像處理的軸承防塵蓋表面缺陷檢測(cè)研究[D];浙江大學(xué);2010年
3 張強(qiáng);基于幾何特征的目標(biāo)識(shí)別及跟蹤技術(shù)的研究[D];長(zhǎng)春理工大學(xué);2008年
4 丁金明;金屬鍍層工件表面缺陷自動(dòng)檢測(cè)系統(tǒng)的研究[D];天津大學(xué);2004年
,本文編號(hào):1550283
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1550283.html