基于五軸平臺CFRP增材制造軌跡控制方法研究
本文關(guān)鍵詞: 纖維增強(qiáng)復(fù)合材料 增材制造 運(yùn)動學(xué)求解 PMAC控制卡 出處:《安徽理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:碳纖維增強(qiáng)復(fù)合材料具有高強(qiáng)度、高模量、耐疲勞、抗蠕變、熱膨脹系數(shù)小等特點(diǎn),被廣泛的應(yīng)用于航空航天、汽車、體育用品等領(lǐng)域。傳統(tǒng)的復(fù)合材料成型工藝主要包括熱壓罐成型、傳遞模塑(RTM)、纏繞成型、自動鋪放等技術(shù),均需要模具作為成型基礎(chǔ)和支撐成型工藝復(fù)雜、成型周期長、成本高。受限于脫模,傳統(tǒng)成型方法難以成型構(gòu)型復(fù)雜的結(jié)構(gòu)。3D打印技術(shù)的出現(xiàn)為碳纖維結(jié)構(gòu)制品快速低成本研制提供一條新的技術(shù)途徑,無需模具,理論上可以成型任意復(fù)雜構(gòu)型結(jié)構(gòu);采用熱塑性樹脂基預(yù)浸料熔融沉積成型,成型工藝簡單,成本低。但傳統(tǒng)的3D打印是由線在XY平面內(nèi)堆積成面,再由面在Z軸方向上堆積成體,適用于傳統(tǒng)的塑料、金屬等均質(zhì)材料。但對于具有各向異性特點(diǎn)的碳纖維復(fù)合材料結(jié)構(gòu)而言,傳統(tǒng)的平面分層方法存在Z向無纖維增強(qiáng),使纖維取向不能按力傳遞方向優(yōu)化布置,大大降低所成型制件的力學(xué)性能。因此,提出一種基于五自由度運(yùn)動平臺的連續(xù)碳纖維熔融沉積方法;谖遢S龍門式機(jī)床設(shè)計(jì)原理,構(gòu)建五軸運(yùn)動平臺的機(jī)械結(jié)構(gòu),包括XYZ三個(gè)平動軸和一個(gè)繞Y軸擺動的B軸和一個(gè)繞Z軸旋轉(zhuǎn)的C軸。采用"PC+PMAC多軸運(yùn)動控制器"搭建五軸平臺控制系統(tǒng),設(shè)置控制卡各變量,調(diào)整平臺運(yùn)動穩(wěn)定性,滿足平臺各軸之間運(yùn)動相互配合。利用五軸聯(lián)動機(jī)床通用的運(yùn)動學(xué)模型對五軸平臺進(jìn)行運(yùn)動學(xué)求解,通過后處理技術(shù)實(shí)現(xiàn)路徑規(guī)劃,并利用vericut軟件對生成的運(yùn)動軌跡進(jìn)行模擬仿真,驗(yàn)證路徑可靠性,之后利用搭建的五軸平臺完成實(shí)物打印。實(shí)驗(yàn)結(jié)果表明,課題搭建的五軸平臺,具有五軸聯(lián)動3D打印能力,實(shí)現(xiàn)了課題的預(yù)期目標(biāo)。
[Abstract]:Carbon fiber reinforced composites (CFRP) have been widely used in aerospace, automobile, automobile, and other fields because of their high strength, high modulus, fatigue resistance, creep resistance and low coefficient of thermal expansion. Traditional composite molding technology mainly includes hot pressing can forming, transfer molding RTM, winding forming, automatic laying and so on, all of which need mould as the foundation and support molding technology, and the forming period is long. High cost. Limited by demoulding, it is difficult for traditional molding methods to form complex structure. 3D printing technology provides a new technical way for rapid and low cost development of carbon fiber structural products without mould. In theory, any complex configuration can be formed. The thermoplastic resin based prepreg is fused and deposited. The molding process is simple and the cost is low. However, the traditional 3D printing is made up of lines stacked in the XY plane. Then the surface is stacked on the Z axis, which is suitable for traditional homogeneous materials such as plastics and metals. However, for the carbon fiber composites with anisotropic characteristics, the traditional plane delamination method has Z-fiber free reinforcement. The orientation of the fiber can not be optimized according to the direction of force transfer, which greatly reduces the mechanical properties of the formed parts. Therefore, a method of continuous carbon fiber melt deposition based on the moving platform of five degrees of freedom is proposed, based on the design principle of the five-axis gantry machine tool. The mechanical structure of the five-axis motion platform is constructed, including three parallel shafts of XYZ, a B-axis swinging around Y-axis and a C-axis rotating around Z-axis. The control system of five-axis platform is constructed by "PC PMAC multi-axis motion controller", and the variables of the control card are set up. The kinematic stability of the platform is adjusted to satisfy the motion cooperation among the axes of the platform. The kinematics model of the five-axis linkage machine tool is used to solve the kinematics of the five-axis platform, and the path planning is realized by post-processing technology. The vericut software is used to simulate the generated motion trajectory to verify the reliability of the path, and then the five-axis platform is used to print the material object. The experimental results show that the five-axis platform has the ability of 3D printing with five-axis linkage. The expected goal of the project has been achieved.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB332
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁偉;;單轉(zhuǎn)臺單擺頭五軸機(jī)床工件坐標(biāo)系建立及編程[J];科技創(chuàng)新與應(yīng)用;2016年16期
2 嚴(yán)淑芬;;用碳纖維增強(qiáng)的3D打印材料[J];現(xiàn)代塑料加工應(yīng)用;2016年02期
3 ;碳纖復(fù)材也可3D打印了![J];塑料制造;2016年04期
4 ;大連企業(yè)研發(fā)出結(jié)合3D打印技術(shù)的五軸聯(lián)動機(jī)床[J];機(jī)械;2016年01期
5 本刊;;日本開發(fā)出碳纖維復(fù)合材料3D打印機(jī)[J];齊魯石油化工;2015年04期
6 中國復(fù)材展;;首款3D打印復(fù)合材料滑雪鞋[J];玻璃鋼/復(fù)合材料;2015年03期
7 錢伯章;;碳纖維增強(qiáng)材料問世可3D打印超強(qiáng)零部件[J];化工新型材料;2014年04期
8 袁士平;;轉(zhuǎn)臺-擺頭結(jié)構(gòu)五軸加工中心的后置處理程序設(shè)計(jì)[J];制造技術(shù)與機(jī)床;2014年04期
9 盧秉恒;李滌塵;;增材制造(3D打印)技術(shù)發(fā)展[J];機(jī)械制造與自動化;2013年04期
10 張善青;倪雁冰;牛興華;孫其新;;實(shí)驗(yàn)用數(shù)控機(jī)床的科學(xué)配置[J];實(shí)驗(yàn)科學(xué)與技術(shù);2006年04期
,本文編號:1505265
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1505265.html