填充疊氮化銅的定向碳納米管復(fù)合含能材料的制備與性能研究
本文關(guān)鍵詞: 定向碳納米管 疊氮化銅 靜電感度 復(fù)合含能橋膜 電爆性能 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:疊氮化銅是一種感度很高的含能材料,由于具有極高的靜電感度,從而限制其在實(shí)際中的應(yīng)用。碳納米管具有優(yōu)異的導(dǎo)電性能,將疊氮化銅填充至碳納米管中可以有效降低其靜電感度,而且利用碳納米管的管道效應(yīng)可以提高疊氮化銅的輸出威力。本文首先基于陽(yáng)極氧化鋁(AAO)模板制備定向碳納米管,然后采用電化學(xué)沉積法在碳納米管中空管腔中原位生長(zhǎng)銅,再通過(guò)氣-固疊氮化反應(yīng)制備填充疊氮化銅的碳納米管復(fù)合材料,并對(duì)其進(jìn)行性能研究。主要研究?jī)?nèi)容與結(jié)果如下:(1)利用化學(xué)氣相沉積(CVD)法在AAO模板中制備了定向碳納米管陣列。結(jié)果表明,化學(xué)氣相沉積法制備的碳納米管具有兩端開(kāi)口、尺寸均一和高度定向的特點(diǎn),碳納米管管壁很薄僅為10nm左右,碳納米管的外徑約為250mm,XRD和拉曼測(cè)試結(jié)果表明利用AAO模板的自催化作用制備的碳納米管結(jié)晶性較差。(2)采用電化學(xué)沉積法在碳納米管中空管腔中原位生長(zhǎng)銅,并研究電化學(xué)沉積條件(電流密度和沉積時(shí)間)對(duì)碳納米管中填充的銅的形貌影響。結(jié)果表明,電流密度較小時(shí),碳納米管中填充的銅為針狀枝晶結(jié)構(gòu),隨著電流密度的增大,碳納米管中銅的填充密度增大,當(dāng)電流密度為0.9mA/cm2,碳納米管中填充的銅為實(shí)心納米線結(jié)構(gòu);隨著沉積時(shí)間增長(zhǎng),碳納米管中銅的填充密度增大。最終確定電化學(xué)沉積的最佳條件為:電流密度為0.6mA/cm2,沉積時(shí)間為1h,并對(duì)此條件下制備的樣品進(jìn)行疊氮化反應(yīng),得到了填充疊氮化銅的碳納米管復(fù)合材料。(3)對(duì)制備的復(fù)合材料進(jìn)行靜電感度測(cè)試,結(jié)果表明,填充疊氮化銅的碳納米管復(fù)合含能材料試樣的50%靜電發(fā)火能量(3.25mJ)明顯高于疊氮化銅的50%靜電發(fā)火能量(0.2mJ)。將填充疊氮化銅的碳納米管復(fù)合材料制成電泳液,利用電泳沉積法制備碳納米管復(fù)合含能橋膜和薄膜。電爆性能測(cè)試結(jié)果表明,碳納米管復(fù)合含能橋膜電爆過(guò)程中的火焰高度更高,火焰面積更大,發(fā)火過(guò)程更為劇烈,發(fā)火持續(xù)時(shí)間更長(zhǎng)。在相同的電爆條件下,碳納米管復(fù)合含能橋膜和Cu橋膜呈現(xiàn)不同的電爆特性,碳納米管復(fù)合含能橋膜的電爆延遲時(shí)間明顯縮短,電爆峰值溫度更高。復(fù)合含能薄膜激光點(diǎn)火實(shí)驗(yàn)結(jié)果表明,在激光束的作用區(qū)域,復(fù)合含能薄膜可以可靠點(diǎn)火。
[Abstract]:Copper azide is an energetic material with high sensitivity. Because of its high electrostatic sensitivity, copper azide is limited in practical applications. Carbon nanotubes have excellent conductivity. The electrostatic sensitivity of carbon nanotubes can be effectively reduced by filling copper azide into carbon nanotubes. Moreover, the output power of copper azide can be improved by using the tube effect of carbon nanotubes. Firstly, directional carbon nanotubes are prepared based on anodic alumina (AAO) template. Then copper was grown in situ in the hollow cavity of carbon nanotubes by electrochemical deposition. Then carbon nanotube composites filled with copper azide were prepared by gas-solid azide reaction. The main contents and results are as follows: 1) the directional carbon nanotube arrays were prepared by chemical vapor deposition (CVD) method in AAO templates. The carbon nanotubes prepared by chemical vapor deposition have the characteristics of open ends, uniform size and high orientation. The wall of carbon nanotubes is only about 10 nm thin, and the outer diameter of carbon nanotubes is about 250 mm. The results of XRD and Raman measurements showed that the crystallinity of carbon nanotubes prepared by the autocatalytic reaction of AAO template was poor. 2) Copper was grown in situ in the hollow cavity of carbon nanotubes by electrochemical deposition. The effect of electrochemical deposition conditions (current density and deposition time) on the morphology of copper filled in carbon nanotubes was studied. The results showed that the copper filled in carbon nanotubes was acicular dendritic structure when the current density was low. With the increase of current density, the filling density of copper in carbon nanotubes increases. When the current density is 0.9 Ma / cm ~ 2, the copper filled in carbon nanotubes is solid nanowire structure. With the increase of deposition time, the filling density of copper in carbon nanotubes increases, and the optimum conditions for electrochemical deposition are as follows: current density is 0.6 Ma / cm ~ 2, deposition time is 1 h. The carbon nanotube composites filled with copper azide were prepared by azide reaction under these conditions. The electrostatic sensitivity of the composites was tested. The 50% electrostatic ignition energy of carbon nanotube composite materials filled with copper azide was 3.25mJ), which was significantly higher than that of copper azide (50% MJ). The carbon nanotube composite filled with copper azide was prepared into electrophoretic solution. Carbon nanotubes composite energetic bridge films and films were prepared by electrophoretic deposition. The results showed that the flame height was higher and the flame area was larger. Under the same condition, carbon nanotube composite energetic bridge film and Cu bridge film show different characteristics of electrical explosion. The delay time of electric explosion of carbon nanotube composite energetic bridge film is shortened obviously, and the peak temperature of electric explosion is higher. The experimental results of laser ignition of composite energetic film show that the laser beam acts in the region. The composite energetic film can be reliably ignited.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ560.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 李娜;許建兵;葉迎華;沈瑞琪;胡艷;;三維多孔微納米結(jié)構(gòu)疊氮化銅的原位合成及表征[J];火炸藥學(xué)報(bào);2015年04期
2 劉黎明;康曉麗;易勇;張紅芳;羅江山;唐永建;;碳納米管對(duì)Zr/KClO_4煙火劑的熱行為和光輻射性能的影響[J];含能材料;2014年01期
3 霸書(shū)紅;閆明輝;周龍;程秀蓮;王桂萍;萬(wàn)新國(guó);杜雪峰;;納米CuO/CNTs的制備及對(duì)高氯酸鉀基煙火藥發(fā)光強(qiáng)度的影響[J];含能材料;2014年01期
4 錢新明;鄧楠;魏思凡;李增義;;碳納米管對(duì)煙火藥劑的催化作用[J];含能材料;2009年05期
5 王羅新;吳忠波;庹新林;鄒漢濤;許杰;易長(zhǎng)海;徐衛(wèi)林;;椅式(5,5)單壁碳納米管內(nèi)硝基甲烷熱解反應(yīng)的理論研究[J];含能材料;2009年05期
6 錢新明;魏思凡;鄧楠;;CNTs/TMO復(fù)合催化劑對(duì)含高氯酸鉀煙火藥劑分解反應(yīng)速率的影響[J];火炸藥學(xué)報(bào);2009年03期
7 崔平;李鳳生;周建;姜煒;楊毅;;碳納米管/高氯酸銨復(fù)合粒子的制備及熱分解性能[J];火炸藥學(xué)報(bào);2006年04期
8 胡平安,王賢保,劉云圻,朱道本;碳納米管的最新制備技術(shù)及生長(zhǎng)機(jī)理[J];化學(xué)通報(bào);2002年12期
,本文編號(hào):1476049
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1476049.html