深孔加工刀具磨損研究與狀態(tài)識別
本文關鍵詞: 單齒BTA鉆 刀具磨損 小波分析 神經(jīng)網(wǎng)絡 出處:《中北大學》2017年碩士論文 論文類型:學位論文
【摘要】:深孔加工在機械制造業(yè)中占據(jù)有重要地位,深孔刀具則是深孔加工的核心部件。BTA深孔鉆作為深孔加工的常用刀具,最容易出現(xiàn)的問題是刀具磨損,直接影響著加工質(zhì)量。因此對深孔刀具磨損情況進行研究并能夠及時監(jiān)測到鉆頭的磨損狀態(tài),進行刀具磨損狀態(tài)的識別具有深遠的意義。論文介紹了單齒BTA內(nèi)排屑深孔鉆的結構,將刀具磨損狀態(tài)分為正常磨損、過度磨損和崩刃三類,并分析了其磨損形式、影響磨損的因素和磨損機理。使用Deform-3D有限元軟件對深孔加工過程進行模擬仿真,并根據(jù)運行得到的結果分析了加工過程中的溫度場分布和刀具磨損情況。論文以BTA內(nèi)排屑深孔鉆削系統(tǒng)為研究對象,在對深孔加工特點以及工況信號進行分析的基礎上,建立了以切削功率為監(jiān)測信號的深孔刀具狀態(tài)監(jiān)測系統(tǒng),并對采集到的功率信號進行了消噪處理和特征提取,最后對特征值進行識別。由于加工環(huán)境的復雜性,直接采集的功率信號含有非平穩(wěn)特性以及包含干擾噪聲,必須首先進行處理,因此進行了消噪過程。然后使用小波分析的方法對消噪后的功率信號進行特征提取。利用小波變換原理對功率信號進行多層分解與重構,提取出與刀具磨損狀態(tài)有較強相關性的高頻頻帶能量,將其作為特征向量。最后建立基于RBF神經(jīng)網(wǎng)絡的深孔加工刀具磨損識別模型,實現(xiàn)特征向量向刀具磨損狀態(tài)的映射。結果表明,該模型對深孔鉆削中刀具磨損狀態(tài)能夠較好的進行識別。
[Abstract]:Deep hole machining occupies an important position in the mechanical manufacturing industry. Deep hole tool is the core part of deep hole machining. BTA deep hole drill is the common tool for deep hole machining. The most common problem is tool wear. It has a direct impact on the machining quality. Therefore, the wear of the deep hole tool can be studied and the wear state of the bit can be monitored in time. It is of great significance to recognize the tool wear state. The structure of single-tooth BTA deep hole drill is introduced in this paper. The tool wear state is divided into normal wear, excessive wear and breakage. The wear form, the factors affecting the wear and the wear mechanism are analyzed. The deep hole machining process is simulated by using Deform-3D finite element software. According to the results obtained from the operation, the temperature field distribution and tool wear in the machining process are analyzed. The paper takes the BTA deep hole drilling system as the research object. On the basis of analyzing the characteristics of deep hole machining and the signal of working condition, a condition monitoring system of deep hole cutting tool is established, which takes cutting power as the monitoring signal. The acquired power signal is de-noised and feature extracted. Finally, the characteristic value is identified. Because of the complexity of the processing environment, the directly collected power signal contains non-stationary characteristics and interference noise. It must be processed first, so the process of de-noising is carried out. Then wavelet analysis is used to extract the features of the de-noised power signal, and the wavelet transform principle is used to decompose and reconstruct the power signal. The high frequency band energy which has strong correlation with the tool wear state is extracted and used as the eigenvector. Finally, the recognition model of tool wear for deep hole machining based on RBF neural network is established. The mapping of feature vector to tool wear state is realized. The results show that the model can recognize the tool wear state in deep hole drilling.
【學位授予單位】:中北大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG713
【參考文獻】
相關期刊論文 前10條
1 董振;沈興全;李耀明;王唯;;基于神經(jīng)網(wǎng)絡的BTA深孔鉆耐用度分析及實驗研究[J];中北大學學報(自然科學版);2016年02期
2 秦國華;謝文斌;王華敏;;基于神經(jīng)網(wǎng)絡與遺傳算法的刀具磨損檢測與控制[J];光學精密工程;2015年05期
3 黃曉斌;沈興全;苗鴻賓;陳振亞;邵振宇;;EA4T空心車軸深孔加工刀具磨損特征的研究[J];工具技術;2014年08期
4 沈興全;朱紅霞;張利新;;深孔加工中BTA刀具鉆削溫度場與磨損的研究[J];煤礦機械;2014年03期
5 朱紅霞;沈興全;張利新;;準干式深孔鉆削中溫度場與刀具磨損的仿真研究[J];機械設計與制造;2014年02期
6 李道波;王彪;劉永姜;李建;付力;;基于Deform-3D的準干式深孔鉆削有限元分析[J];現(xiàn)代制造工程;2013年01期
7 李建;王彪;劉永姜;李道波;付力;;深孔鉆削的有限元仿真分析[J];機械設計與制造;2012年11期
8 李道波;王彪;李建;付力;;基于Deform-3D準干式深孔BTA刀具鉆削的仿真研究[J];工具技術;2012年09期
9 童慧芬;王偉;劉偉;;基于Deform 3D的深孔鉆削溫度場仿真研究[J];機電技術;2011年05期
10 趙武;陳德杰;;重型油缸側(cè)缸BTA深孔套料加工刀具過度磨損崩刃的研究[J];機床與液壓;2011年16期
,本文編號:1471378
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1471378.html