超聲產(chǎn)氣介導(dǎo)釋藥的PLGA中空微球診療一體化研究
本文關(guān)鍵詞:超聲產(chǎn)氣介導(dǎo)釋藥的PLGA中空微球診療一體化研究 出處:《鄭州大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: PLGA 中空微球 診療一體化 超聲空化效應(yīng) 超聲靶向微泡爆破
【摘要】:惡性腫瘤嚴(yán)重威脅人類生命健康,傳統(tǒng)的化療藥物體內(nèi)消除快、低靶向性,副作用大,而且腫瘤診斷和治療是相互分離的兩次醫(yī)療過程,令患者難以耐受。因此為了實(shí)現(xiàn)抗腫瘤藥物診療一體化,我們構(gòu)建了靶向腫瘤細(xì)胞、在靶部位濃集釋藥、有效治療腫瘤的同時(shí)具備診斷功能的給藥體系,即共載產(chǎn)氣劑NaHCO3和抗癌藥阿霉素的聚乳酸-羥基乙酸中空微球-PLGA-DOX@NaHCO3 HMs診療一體化給藥體系。本課題研究?jī)?nèi)容主要分為三部分:第一部分:構(gòu)建PLGA-DOX@NaHCO3 HMs給藥體系采用復(fù)乳溶劑揮發(fā)法制備內(nèi)腔包載阿霉素和NaHCO3的PLGA中空微球。透射電鏡可見PLGA-DOX@NaHCO3 HMs中空結(jié)構(gòu),殼厚約420nm。光學(xué)顯微鏡觀察其外觀均勻分散,圓整規(guī)則。平均粒徑分布在1~2μm,電位為(-21.8±1.31)mV,紫外分光光度法法測(cè)定其包封率和載藥量分別為(39.18±2.20)%和(3.92±0.22)%。包載NaHCO3的制劑-PLGA-DOX@NaHCO3 HMs相比于未包封NaHCO3制劑——PLGA-DOX HMs可顯著增強(qiáng)體內(nèi)外超聲顯影效果,具備pH響應(yīng)釋藥特性和更高的累積釋藥量,同時(shí)在超聲作用下累積釋藥量明顯增加。第二部分:研究PLGA-DOX@NaHCO3 HMs給藥體系的體外細(xì)胞毒性及靶向性以乳腺癌細(xì)胞MCF-7為模型細(xì)胞考察PLGA-DOX@NaHCO3 HMs的體外細(xì)胞毒性和靶向性。MTT結(jié)果顯示制劑組細(xì)胞抑制率均顯示良好的濃度及時(shí)間依賴性,PLGA-DOX@NaHCO3 HMs相比于PLGA-DOX HMs細(xì)胞存活率明顯下降,尤其在施加超聲治療后細(xì)胞抑制率進(jìn)一步增加。細(xì)胞攝取定性結(jié)果顯示腫瘤細(xì)胞更加傾向于攝取具備pH敏感性能的PLGA-DOX@NaHCO3 HMs制劑組,且其與PLGA-DOX HMs相比DOX在細(xì)胞核部位蓄積量明顯增多。流式細(xì)胞術(shù)檢測(cè)細(xì)胞攝取定量實(shí)驗(yàn)更加證實(shí)了包封NaHCO3的PLGA HMs更加有助于DOX在細(xì)胞內(nèi)蓄積和滯留。細(xì)胞凋亡實(shí)驗(yàn)結(jié)果顯示PLGA-DOX@NaHCO3 HMs相比于PLGA-DOX HMs細(xì)胞總凋亡率明顯增加,在施加超聲治療后超聲治療與化療雙重作用使細(xì)胞總凋亡率更高,顯示其良好的抗腫瘤細(xì)胞效果。第三部分:研究PLGA-DOX@NaHCO3 HMs給藥體系的藥物代謝動(dòng)力學(xué)研究以昆明種雌性小鼠為模型動(dòng)物,分別以瘤內(nèi)原位注射方式給予PLGA-DOX@NaHCO3 HMs,靜脈注射方式給予原料藥DOX,以高效液相色譜法為定量方法測(cè)定阿霉素在血漿中含量的方式考察制劑和原料藥中藥物在小鼠體內(nèi)的藥物代謝動(dòng)力學(xué)行為。分析結(jié)果得到制劑組和原料藥組在小鼠體內(nèi)藥物代謝動(dòng)力學(xué)行為差異顯著。制劑組相比于原料藥DOX,采用瘤內(nèi)原位注射可將更多藥物蓄積于腫瘤部位,減少藥物經(jīng)血滲透入正常組織,降低對(duì)正常組織的損傷。其半衰期和平均滯留時(shí)間明顯增加,提高了生物利用度,延長(zhǎng)了DOX作用時(shí)間。第四部分:PLGA-DOX@NaHCO3 HMs給藥體系的藥效學(xué)研究采用S180荷瘤昆明小鼠為動(dòng)物模型,以瘤內(nèi)注射制劑組和靜脈注射原料藥組的方式連續(xù)給藥,以小鼠體重、相對(duì)瘤體積、瘤重、腫瘤形態(tài)等作為評(píng)價(jià)指標(biāo),考察了PLGA-DOX@NaHCO3 HMs對(duì)小鼠生命質(zhì)量的影響以及抑制腫瘤生長(zhǎng)的效果。實(shí)驗(yàn)結(jié)果得出PLGA-DOX@NaHCO3 HMs相比于未包封產(chǎn)氣劑NaHCO3的制劑具有較好的治療效果,尤其在合并局部超聲治療后,通過超聲靶向微泡爆破技術(shù)引發(fā)氣體空化效應(yīng)使得腫瘤治療效果更加顯著,與原料藥DOX治療效果相當(dāng)(P0.05)。聯(lián)合組織病理學(xué)切片結(jié)果表明DOX對(duì)腫瘤生長(zhǎng)抑制作用顯著,但其存在嚴(yán)重的心腎毒性。制劑組對(duì)各組織無明顯的毒副作用,同時(shí)在合并超聲作用后,因化療與超聲治療的協(xié)同作用,腫瘤治療效果顯著提高,使得荷瘤小鼠生命質(zhì)量得以改善,毒副作用降低,安全性提高。本課題成功構(gòu)建的PLGA-DOX@NaHCO3 HMs給藥體系,經(jīng)體內(nèi)外考察得知,該體系具備pH敏感性能,可在腫瘤微酸環(huán)境下產(chǎn)生CO2氣體用于超聲顯影定位診斷腫瘤,同時(shí)引發(fā)空化效應(yīng)抑制腫瘤生長(zhǎng);在進(jìn)行超聲治療后,通過超聲靶向微泡爆破引發(fā)空化效應(yīng)和聲孔效應(yīng)有效增加靶區(qū)藥物蓄積濃度,提高腫瘤治療效果,實(shí)現(xiàn)化療、超聲治療、診斷于一體的的目的。
[Abstract]:Malignant tumor is a serious threat to human life and health. The traditional chemotherapeutic drugs eliminate the fast and low targeting in vivo, and the side effects are large. Moreover, tumor diagnosis and treatment are the two separate medical processes, which make it difficult for patients to tolerate. Therefore, in order to achieve anti-tumor drug treatment of integration, we construct simultaneous targeting of tumor cells, in the target site concentration release, effective treatment of tumors with the diagnosis function of the administration system, namely carrying gas producing agent NaHCO3 and anticancer drug doxorubicin PLGA microspheres -PLGA-DOX@NaHCO3 HMs hollow theranostics administration system. The research contents are divided into three parts: the first part is to build PLGA-DOX@NaHCO3 HMs drug delivery system, and prepare PLGA hollow microspheres loaded with adriamycin and NaHCO3 by emulsion evaporation. PLGA-DOX@NaHCO3 HMs hollow structure was found by transmission electron microscopy, and the thickness of the shell was about 420nm. The optical microscope shows that its appearance is evenly distributed and round the rules. The average particle size distribution was 1~2 mu m and the potential was (-21.8 + 1.31) mV. The encapsulation efficiency and drug loading of UV spectrophotometry were (39.18 + 2.20)% and (3.92 + 0.22)% respectively. The NaHCO3 -PLGA-DOX@NaHCO3 HMs, compared with the unencapsulated NaHCO3 preparation, PLGA-DOX HMs, significantly enhanced the ultrasound imaging effect in vivo and in vitro, and had pH responsive release characteristics and higher cumulative release dose. Meanwhile, the cumulative release amount increased significantly under ultrasound. The second part: We studied the cytotoxicity and targeting of PLGA-DOX@NaHCO3 HMs delivery system in vitro, and investigated the cytotoxicity and targeting of PLGA-DOX@NaHCO3 HMs in vitro with breast cancer cell MCF-7 as a model cell. MTT results showed that the cell inhibition rate in the preparation group showed a good concentration and time dependence. The survival rate of PLGA-DOX@NaHCO3 HMs was significantly lower than that of PLGA-DOX HMs cells, especially after the application of ultrasound treatment, the cell inhibition rate increased further. The qualitative results of cell uptake showed that tumor cells tended to ingest the PLGA-DOX@NaHCO3 HMs preparations with pH sensitive properties, and compared with PLGA-DOX HMs, DOX accumulation in nuclear sites increased significantly. Flow cytometry detection of cell uptake quantitative tests confirmed that the PLGA HMs encapsulated in NaHCO3 was more conducive to the accumulation and retention of DOX in the cells. The apoptosis test results showed that the total apoptosis rate of PLGA-DOX@NaHCO3 HMs increased significantly compared with PLGA-DOX HMs cells. After ultrasound treatment, the dual effect of ultrasound therapy and chemotherapy made the total apoptosis rate of cells higher, showing its good anti-tumor effect. The third part: To study the pharmacokinetics study of drug delivery system PLGA-DOX@NaHCO3 HMs to female Kunming mice as the model animal, respectively by injection of tumor in situ within the given PLGA-DOX@NaHCO3 HMs, intravenous injection of given drug DOX, determined by HPLC on preparations and raw materials in the plasma concentration of adriamycin in drugs pharmacokinetic behavior of mice for quantitative method. The results of the analysis showed that the pharmacokinetics of the drug group and the drug group were significantly different in the mice. In the preparation group, compared with the crude drug DOX, intratumoral injection in situ can accumulate more drugs in the tumor site, reduce the penetration of drugs into normal tissues and reduce the damage to normal tissues. The half-life and the average retention time increased significantly, increasing the bioavailability and prolonging the time of DOX action. The fourth part: the research on the S180 tumor in Kunming mice animal model for the efficacy of PLGA-DOX@NaHCO3 HMs administration system, with intratumoral injection preparation group and intravenous injection of API Group continuously administered to mice weight, relative tumor volume, tumor weight, tumor morphology as the evaluation index, the effects of PLGA-DOX@NaHCO3 HMs on the quality of life of mice and the effect of inhibiting tumor growth. The experimental results show that PLGA-DOX@NaHCO3 HMs compared to the preparation of non encapsulated gas producing agent NaHCO3 has a better therapeutic effect, especially in combination with local ultrasonic treatment, causing gas cavitation effect makes the tumor treatment effect is more significant to the micro bubble blasting technology by ultrasonic target, equivalent treatment medicine raw materials DOX (P0.05). The results of the joint histopathological section showed that DOX had a significant inhibitory effect on tumor growth, but it had serious cardionrenal toxicity. The preparation group had no obvious toxic and side effects on all tissues. Meanwhile, after the combination of ultrasound, the therapeutic effect of tumor was significantly improved due to the synergistic effect of chemotherapy and ultrasound treatment, so that the quality of life of tumor bearing mice was improved, the toxicity and side effects were reduced, and the safety was improved. This study successfully constructed PLGA-DOX@NaHCO3 HMs administration system, the external and internal analysis, the system has pH sensitive performance in tumor acidic environment to produce the CO2 gas for ultrasound imaging diagnosis of tumors, and cause cavitation effect to inhibit tumor growth; in ultrasound after treatment by ultrasound targeted microbubble cavitation caused by blasting the effect of sound hole effect effectively increase the drug target volume concentration, improve the tumor treatment, chemotherapy, ultrasonic treatment, achieve the purpose of diagnosis in one.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R943;R96
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃瑩瑩;;Biodegradable Polylactide-co-glycolide (PLGA) Thin Films Prepared by Electrospray and Pressurized Spray Deposition[J];Journal of Wuhan University of Technology-Materials Science;2005年S1期
2 王志清;劉衛(wèi);徐輝碧;楊祥良;;載三氧化二砷的PEG-PLGA隱性納米粒的制備及體外研究(英文)[J];Chinese Journal of Chemical Engineering;2007年06期
3 ;Effect of Excipients on Stability and Structure of rhCuZn-SOD Encapsulated in PLGA Microspheres[J];Chemical Research in Chinese Universities;2004年03期
4 郭曉東;;Surface Modification of Biomimetic PLGA-(ASP-PEG) Matrix with RGD-Containing Peptide:a New Non-Viral Vector for Gene Transfer and Tissue Engineering[J];Journal of Wuhan University of Technology(Materials Science Edition);2006年03期
5 陳劍;樊新;周忠誠(chéng);阮建明;;PLGA材料仿生改性的最新進(jìn)展[J];粉末冶金材料科學(xué)與工程;2008年06期
6 ;Preparation and mineralization of PLGA/Gt electrospun fiber mats[J];Chinese Science Bulletin;2009年08期
7 李雙燕;;PLGA組織工程支架材料的研究與展望[J];國(guó)外絲綢;2009年02期
8 郝杰;鄭啟新;;Biomineralization of the Surface of PLGA-(ASP-PEG) Modified with the K_(16) and RGD-containing Peptide[J];Journal of Wuhan University of Technology(Materials Science Edition);2009年05期
9 ;Preparation of Tolterodine Metabolite Loaded Biodegradable PLGA Microspheres[J];Chemical Research in Chinese Universities;2010年01期
10 ;Comparison of BSA Release Behavior from Electrospun PLGA and PLGA/Chitosan Membranes[J];Chemical Research in Chinese Universities;2011年04期
相關(guān)會(huì)議論文 前10條
1 鄭強(qiáng);潘志軍;薛德挺;李杭;李建兵;;納米PLGA/HA復(fù)合物和骨髓基質(zhì)干細(xì)胞在軟骨修復(fù)中的應(yīng)用[A];2009年浙江省骨科學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2009年
2 王漢杰;蘇文雅;廖振宇;王生;常津;;PLGA/Liposome核殼納米粒子的制備[A];天津市生物醫(yī)學(xué)工程學(xué)會(huì)第30次學(xué)術(shù)年會(huì)暨生物醫(yī)學(xué)工程前沿科學(xué)研討會(huì)論文集[C];2010年
3 王光林;吳輝;;聯(lián)合靜電紡絲法和轉(zhuǎn)筒接收法制備PLGA—膠原—絲素納米神經(jīng)導(dǎo)管[A];第六屆西部骨科論壇暨貴州省骨科年會(huì)論文匯編[C];2010年
4 趙潔;全大萍;廖凱榮;伍青;;含不同側(cè)氨基密度的ASP-PEG-PLGA的合成與表征[A];中國(guó)生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
5 黃艷霞;任天斌;張麗紅;呂凱歌;蔣欣泉;潘可風(fēng);任杰;;PLGA/NHA-RGD復(fù)合材料的制備及性能研究[A];2006年上海市醫(yī)用生物材料研討會(huì)論文匯編[C];2006年
6 ;Synthesis of PLGA Labeled with ~(125)I[A];2006年上海市醫(yī)用生物材料研討會(huì)論文匯編[C];2006年
7 李艷輝;崔媛;張慧敏;關(guān)秀文;;利用等離子體技術(shù)在PLGA表面固定膠原的研究[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
8 何樹;畢龍;劉建;扈剛;孟國(guó)林;董鑫;郝賦;趙軼男;;新型PLGA/HMS-HA復(fù)合微球載體支架對(duì)兔骨髓間充質(zhì)干細(xì)胞生物學(xué)行為的影響[A];中華醫(yī)學(xué)會(huì)第七次全國(guó)骨質(zhì)疏松和骨礦鹽疾病學(xué)術(shù)會(huì)議論文匯編[C];2013年
9 ;Preparation of PLGA Ultrasound Microbubble Loaded Hematoporphyrin and optimization of formulation[A];中華醫(yī)學(xué)會(huì)第十次全國(guó)超聲醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2009年
10 李志宏;武繼民;汪鵬飛;陳學(xué)忠;黃姝杰;關(guān)靜;張西正;;BMP/PLGA緩釋微球的制備與體外釋放性能[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第4分冊(cè))[C];2010年
相關(guān)重要報(bào)紙文章 前3條
1 記者 白毅;合成溫敏型PLGA-PEG-PLGA嵌段共聚物[N];中國(guó)醫(yī)藥報(bào);2006年
2 尹東鋒 鐘延強(qiáng);聚合物 藥物 制備工藝 附加劑[N];中國(guó)醫(yī)藥報(bào);2006年
3 李博;“人造紅細(xì)胞”[N];大眾衛(wèi)生報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 李玉華;載阿倫磷酸鈉PLGA微球的磷酸鈣骨水泥復(fù)合組織工程骨修復(fù)兔股骨髁骨缺損的實(shí)驗(yàn)研究[D];山東大學(xué);2015年
2 周璇;RGD靶向微泡與載藥微球在肝臟創(chuàng)傷滲血診斷和治療中的研究[D];中國(guó)人民解放軍醫(yī)學(xué)院;2015年
3 陶春;可注射鑲嵌載生長(zhǎng)因子殼聚糖微球的PLGA多孔復(fù)合微球支架的研究[D];第二軍醫(yī)大學(xué);2015年
4 鮑文;靶向納米載藥系統(tǒng)DNR-PLGA-PLL-PEG-Tf治療惡性血液病的體內(nèi)、體外研究[D];東南大學(xué);2015年
5 王晨暉;裝載蛋白藥物的PCADK/PLGA混合微球研究及在重組人生長(zhǎng)激素中的應(yīng)用[D];吉林大學(xué);2016年
6 盧明子;載血紅蛋白PEG-PLGA納米粒子的構(gòu)建、生物學(xué)作用及其靶向性能的研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2016年
7 張皓軒;載辛伐他汀PLGA微球/磷酸鈣組織工程骨的生物相容性和成骨活性的研究[D];山東大學(xué);2016年
8 李青;新型高效靶向ROS響應(yīng)的載藥納米粒子系統(tǒng)在口腔鱗癌治療中的研究[D];山東大學(xué);2016年
9 齊峰;粒徑均一的PLGA顆粒制備及在長(zhǎng)效緩釋體系和Pickering乳液中的應(yīng)用[D];中國(guó)科學(xué)院研究生院(過程工程研究所);2015年
10 劉苒;轉(zhuǎn)鐵蛋白修飾的新型多聚物載藥納米粒的研制及靶向逆轉(zhuǎn)白血病多藥耐藥的體外研究[D];東南大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 侯瑞瑞;超聲產(chǎn)氣介導(dǎo)釋藥的PLGA中空微球診療一體化研究[D];鄭州大學(xué);2017年
2 陽剛;復(fù)合肌腱修復(fù)材料—載細(xì)胞用防粘連性隔離/支架型PLGA膜的體外研制[D];中南大學(xué);2010年
3 唐冠男;微流控技術(shù)原位合成多形貌PLGA/TiO_2復(fù)粒子及其體外藥物釋放的研究[D];華南理工大學(xué);2015年
4 李文秀;形貌可控的PLGA/PCL復(fù)合粒子的制備及體外降解性能的基礎(chǔ)研究[D];華南理工大學(xué);2015年
5 黃卓穎;重組人表皮生長(zhǎng)因子PLGA納米粒經(jīng)皮治療大鼠糖尿病潰瘍的作用研究[D];福建中醫(yī)藥大學(xué);2015年
6 聞繼杰;含胺基修飾beta-環(huán)糊精的可降解兩親性聚酯的合成及其對(duì)蛋白質(zhì)和抗癌藥物的控制釋放[D];天津理工大學(xué);2015年
7 王翠偉;基于點(diǎn)擊化學(xué)制備PCL/PEG兩親性共網(wǎng)絡(luò)聚合物以及不同支臂PLGA作為疫苗載體的初步研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
8 王共喜;PLA/AT納米復(fù)合材料的制備與性能及PLGA纖維的表面改性[D];復(fù)旦大學(xué);2014年
9 劉青;植入體材料與PLGA載藥微球的復(fù)合研究[D];西南交通大學(xué);2015年
10 張科技;蠶絲-PLGA支架的生物相容性及力學(xué)性能的研究[D];浙江省醫(yī)學(xué)科學(xué)院;2015年
,本文編號(hào):1346507
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1346507.html