多孔碳基超級電容器電極材料的制備與性能研究
本文關(guān)鍵詞:多孔碳基超級電容器電極材料的制備與性能研究 出處:《浙江理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 超級電容器 多孔碳 活化 氮摻雜
【摘要】:作為新型能量儲(chǔ)存/轉(zhuǎn)換裝置,超級電容器相比于其他傳統(tǒng)的電化學(xué)儲(chǔ)能裝置,具有諸多的優(yōu)點(diǎn),如充放電速度極快,重復(fù)性能好,循環(huán)性優(yōu)異等。超級電容器介于普通電容器和傳統(tǒng)化學(xué)電池之間,根據(jù)儲(chǔ)能機(jī)理分為雙電層電容和贗電容兩種類型。雙電層電容通過電極表面和電解質(zhì)液面之間形成的極薄的雙電層來進(jìn)行儲(chǔ)能,相比贗電容,具有優(yōu)異的穩(wěn)定性、快速的充放電速率、高功率密度等優(yōu)點(diǎn),是目前商品化電容器的主要類型。然而當(dāng)前的雙電層電容器面臨能量密度低的問題,而能量密度主要由電極材料的比電容決定。多孔碳是雙電層電容器中常用的電極材料,其孔道根據(jù)孔徑不同可分為三類:微孔,介孔和大孔。微孔容易阻礙電解質(zhì)離子的傳輸,大孔則實(shí)現(xiàn)不了高的表面積,相比于這兩類孔型,介孔的優(yōu)勢較大。本論文以多孔碳作為基礎(chǔ)研究材料,選取不同的制備方法和不同的原材料,并且嘗試通過摻雜的方式,制備出了具有高比表面積,適宜的孔徑分布以及低成本簡單易制的高性能的電極材料。同時(shí)采用掃描電鏡(SEM)、透射電鏡(TEM)、氮吸附、X射線衍射(XRD)、Raman和XPS對電極材料的結(jié)構(gòu)與組成成分進(jìn)行了表征,運(yùn)用電化學(xué)工作站對其電化學(xué)性能進(jìn)行研究。論文分為以下三個(gè)體系:1、以酚醛樹脂納米球?yàn)樘荚?采用無惰性氣氛無化學(xué)活化劑的空氣活化法制備具有高比表面積的多孔碳納米球(AACS)。考察活化時(shí)間對孔結(jié)構(gòu)的影響,表明多孔碳中介孔比例隨活化時(shí)間的延長而增多。6小時(shí)活化的樣品AACS-6具有最高的比表面積(2178 m_2 g~(-1))和最大孔容(1.01 cm~3 g~(-1))。電化學(xué)測試表明,AACS-6具有最大的比電容值222 F g~(-1)(0.5A g~(-1)),優(yōu)異的倍率性能(20 A g~(-1)保留87.5%)和循環(huán)性能(5000圈循環(huán)后保留97%)。組裝所得對稱型兩電極體系具有高的能量密度(功率密度為398.7 W kg~(-1)時(shí),能量密度為10.1Wh kg~(-1))。2、以生物質(zhì)香榧?xì)樘荚?采用惰性氛圍KOH活化法制備具有良好形貌和高比表面積的生物質(zhì)多孔碳。研究結(jié)果表明,通過調(diào)節(jié)活化溫度和KOH用量可調(diào)控多孔碳的孔道結(jié)構(gòu)。以香榧?xì)?KOH質(zhì)量比為1:3經(jīng)800 oC活化所得樣品AC-800-3具有最大的比表面積(2100.8m2 g~(-1))和微介孔分級的孔道結(jié)構(gòu)。電化學(xué)測試表明,AC-800-3具有最大的比電容值290.5F g~(-1)(0.5 A g~(-1)),良好的倍率性能(20 A g~(-1)保留62.6%)。組裝所得對稱型兩電極體系具有高的能量密度(功率密度為360.1 W kg~(-1)時(shí),能量密度為13.5 Wh kg~(-1))和優(yōu)異的循環(huán)性能(5000圈循環(huán)后保留93.1%)3、以介孔氧化硅SBA-15為硬模板,糠醇為碳源,三聚氰胺為氮源,通過模板復(fù)制和KOH化學(xué)活化制備具有發(fā)達(dá)介孔結(jié)構(gòu)的多孔碳材料。當(dāng)KOH/碳質(zhì)量比為2:1,800 oC活化所得多孔碳ANMC-2具有發(fā)達(dá)的孔道結(jié)構(gòu),比表面積高達(dá)2277.7 m2 g-1,氮含量為3.84%。電化學(xué)測試表明,ANMC-2具有極高的比電容292.6 F g~(-1)(0.5 A g~(-1)),良好的倍率性能(20 Ag~(-1)保留82.7%)。組裝所得對稱型兩電極體系具有高的能量密度(功率密度為359.3 W kg~(-1)時(shí),能量密度為14.8 Wh kg~(-1))和優(yōu)異的循環(huán)性能(5000圈循環(huán)后保留98.5%)。
[Abstract]:As a new energy storage / conversion device, super capacitor has many advantages compared with other traditional electrochemical energy storage devices, such as fast charge and discharge, good repeatability and excellent cycling performance. The supercapacitor is between the ordinary capacitor and the traditional chemical battery. According to the energy storage mechanism, it can be divided into two types: double layer capacitance and pseudo capacitance. The electric double layer capacitor is used to store energy between the electrode surface and the electrolyte layer. It has the advantages of excellent stability, fast charge and discharge rate and high power density compared with the pseudo capacitor. It is the main type of commercialized capacitors. However, the current double layer capacitor is faced with the problem of low energy density, and the energy density is mainly determined by the specific capacitance of the electrode material. Porous carbon is a common electrode material in double layer capacitors. The pore channel can be divided into three types according to the pore size: micropores, mesoporous and large pores. Micropores can easily impede the transmission of electrolyte ions, and large pores can not achieve high surface area. Compared to these two types of pores, the advantages of mesoporous pores are larger. In this paper, porous carbon is chosen as the basic research material, and different preparation methods and different raw materials are selected. And by doping, we have prepared high-performance electrode materials with high specific surface area, suitable pore size distribution, and low cost. Meanwhile, the structure and composition of electrode materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X ray diffraction (XRD), Raman and XPS. The electrochemical performance of electrode materials was studied by electrochemical workstation. The paper is divided into three systems: 1. Nano porous carbon nanospheres (AACS) with high specific surface area were prepared by air activation with phenolic resin nanospheres as carbon source and inert atmosphere without chemical activator. The effect of activation time on pore structure was investigated, which showed that the ratio of porous carbon medium pore increased with the prolongation of activation time. The 6 hour activated sample AACS-6 has the highest specific surface area (2178 m_2 g~ (-1)) and the maximum Kong Rong (1.01 cm~3 g~ (-1)). Electrochemical measurements showed that AACS-6 had the largest specific capacitance value of 222 F g~ (-1) (0.5A g~ (-1)), and the excellent rate performance (20 A g~ (-1) retained 87.5%) and cycle performance (97% after 5000 cycles). The assembled symmetric two electrode system has high energy density (the power density is 398.7 W kg~ (-1), and the energy density is 10.1Wh kg~ (-1)). 2, the biomass of Torreya grandis shell as the carbon source, using an inert atmosphere KOH activation preparation has good morphology and high surface area porous carbon biomass. The results show that the pore structure of porous carbon can be regulated by adjusting the activation temperature and the amount of KOH. In Torreya grandis shell mass ratio of /KOH was 1:3 by oC AC-800-3 800 activation samples had the largest surface area (2100.8m2 g~ (-1)) and micro mesoporous hierarchical pore structure. The electrochemical test showed that AC-800-3 had the maximum specific capacitance value 290.5F g~ (-1) (0.5 A g~ (-1)), and the good multiplier performance (20 A g~ (-1) retained 62.6%). The assembly of symmetric two electrode system has the advantages of high energy density (power density of 360.1 W kg~ (-1), the energy density of 13.5 Wh kg~ (-1)) and excellent cycling performance (93.1% retained 5000 cycles after 3), using mesoporous silica SBA-15 as hard template and furfuryl alcohol as carbon source. Melamine as nitrogen source, through the template replication and KOH activation of porous carbon materials prepared with developed mesoporous structure. When the KOH/ carbon mass ratio is 2:1800 oC activation, the porous carbon ANMC-2 has developed pore structure, and the specific surface area is 2277.7 M2 g-1, and the nitrogen content is 3.84%. The electrochemical test shows that ANMC-2 has a high specific capacitance of 292.6 F g~ (-1) (0.5 A g~ (-1)), and a good multiplier performance (20 Ag~ (-1) 82.7%). The assembled symmetrical two electrode system has high energy density (power density is 359.3 W kg~ (-1), the energy density is 14.8 Wh kg~ (-1)) and excellent cycle performance (5000 cycles after 98.5%).
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM53;O646
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期
2 梓文;;超高能超級電容器[J];兵器材料科學(xué)與工程;2013年04期
3 ;歐盟創(chuàng)新型大功率超級電容器問世[J];功能材料信息;2014年01期
4 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國泰院士解密“超級電容器”[J];環(huán)境與生活;2012年01期
5 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級電容器電極材料的研究進(jìn)展[J];無機(jī)材料學(xué)報(bào);2002年04期
6 朱修鋒,王君,景曉燕,張密林;超級電容器電極材料[J];化工新型材料;2002年04期
7 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期
8 朱磊,吳伯榮,陳暉,劉明義,簡旭宇,李志強(qiáng);超級電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
9 賀福;碳(炭)材料與超級電容器[J];高科技纖維與應(yīng)用;2005年03期
10 鄧梅根,楊邦朝,胡永達(dá);卷繞式活性炭纖維布超級電容器的研究[J];功能材料;2005年08期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級電容器中的應(yīng)用[A];中國化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級電容器組的研制[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級電容器的研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級電容器——多孔碳電極材料的影響[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
9 馬衍偉;;新型超級電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊)[C];2010年
10 劉不厭;彭喬;孫s,
本文編號:1341080
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1341080.html