社會(huì)網(wǎng)絡(luò)中社區(qū)發(fā)現(xiàn)與用戶推薦算法研究
本文選題:關(guān)聯(lián)規(guī)則 切入點(diǎn):相似度 出處:《新疆大學(xué)》2017年碩士論文
【摘要】:隨著現(xiàn)實(shí)人類社會(huì)與虛擬網(wǎng)絡(luò)融合的不斷深化,新興的社會(huì)網(wǎng)絡(luò)為信息的快速傳播和交流共享提供了便捷有效的平臺(tái)。這使得社會(huì)網(wǎng)絡(luò)中的用戶能隨時(shí)了解,并參與信息的交互過程。人們?cè)谛畔⒔换キh(huán)境中所留下的數(shù)字足跡形成了各種各樣的關(guān)系網(wǎng)絡(luò)。由于網(wǎng)絡(luò)中用戶關(guān)系數(shù)據(jù)具有潛在的商業(yè)及研究?jī)r(jià)值,社會(huì)網(wǎng)絡(luò)中社區(qū)劃分及用戶推薦的相關(guān)研究已成為目前研究人員廣泛關(guān)注的課題。本文主要研究了關(guān)聯(lián)規(guī)則算法、基于線圖的重疊社區(qū)發(fā)現(xiàn)在微博中的應(yīng)用以及用戶推薦算法。具體工作內(nèi)容和研究成果如下:1.對(duì)于傳統(tǒng)Apriori算法存在時(shí)間復(fù)雜度較高,無關(guān)冗余項(xiàng)較多的問題,提出基于位圖數(shù)據(jù)和散列函數(shù)的BHA算法,結(jié)合相關(guān)性質(zhì),有效提升了算法的計(jì)算效率。同時(shí),在基于微博用戶的推薦應(yīng)用中,由關(guān)注關(guān)系計(jì)算用戶間的出,入相似度,并引入信任度概念,彌補(bǔ)了相似度未考慮用戶間距離的問題。在此基礎(chǔ)上,結(jié)合BHA算法進(jìn)行用戶推薦;谖⒉┯脩魯(shù)據(jù)的實(shí)驗(yàn)結(jié)果表明,關(guān)聯(lián)規(guī)則挖掘效率及算法推薦的有效性均有所提高。2.提出了基于用戶關(guān)注相似和標(biāo)簽相似的微博社區(qū)發(fā)現(xiàn)網(wǎng)絡(luò)模型,將CNM算法與該模型相結(jié)合進(jìn)行微博社區(qū)發(fā)現(xiàn)。對(duì)于檢測(cè)結(jié)果中存在的節(jié)點(diǎn)過重疊現(xiàn)象,引入核心鏈路概念,對(duì)網(wǎng)絡(luò)中的孤立邊進(jìn)行刪除,有效解決了節(jié)點(diǎn)的過度重疊問題。在此基礎(chǔ)上,進(jìn)一步分析共鄰好友間的關(guān)系,提出了基于社區(qū)檢測(cè)的微博用戶推薦算法。將所提算法應(yīng)用于真實(shí)網(wǎng)絡(luò)和微博網(wǎng)絡(luò),實(shí)驗(yàn)表明社區(qū)發(fā)現(xiàn)的精確度得到進(jìn)一步提高,同時(shí),將社區(qū)檢測(cè)與用戶推薦相結(jié)合有效提升了推薦結(jié)果的準(zhǔn)確性。
[Abstract]:With the deepening of the integration of real human society and virtual network, the emerging social network provides a convenient and effective platform for the rapid dissemination and exchange and sharing of information, which enables the users in the social network to understand it at any time. And participate in the process of information interaction. The digital footprint left by people in the information interactive environment forms a variety of relational networks. Because of the potential commercial and research value of user relationship data in the network, The research on community division and user recommendation in social network has become a topic that researchers pay more attention to. This paper mainly studies the algorithm of association rules. The application of line graph based overlapping community discovery and user recommendation algorithm in Weibo. The specific work and research results are as follows: 1.The traditional Apriori algorithm has the problems of higher time complexity and more irrelevant redundant items. This paper proposes a BHA algorithm based on bitmap data and hash function, which combines the related properties and improves the efficiency of the algorithm. At the same time, in the recommended application of Weibo, the similarity between users is calculated by the concern relation. The concept of trust is introduced to make up for the problem that the similarity does not take into account the distance between users. On this basis, the BHA algorithm is used to recommend users. The experimental results based on Weibo user data show that, The efficiency of association rules mining and the effectiveness of algorithm recommendation are improved. 2. Weibo community discovery network model based on user concern similarity and label similarity is proposed. The CNM algorithm is combined with the model for Weibo community discovery. The concept of core link is introduced to remove the isolated edges in the network. The problem of excessive overlap of nodes is effectively solved. On this basis, the relationship between common neighbors and friends is further analyzed, and a recommendation algorithm for Weibo users based on community detection is proposed. The proposed algorithm is applied to real networks and Weibo networks. The experimental results show that the accuracy of community discovery is further improved, and the accuracy of recommended results is improved effectively by combining community detection with user recommendation.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O157.5;TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
2 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
3 呂善國(guó);吳效葵;曹義親;;基于網(wǎng)絡(luò)結(jié)構(gòu)的推薦算法[J];實(shí)驗(yàn)室研究與探索;2012年07期
4 蘇瑩;劉建國(guó);郭強(qiáng);田大鋼;;考慮負(fù)面評(píng)價(jià)的個(gè)性化推薦算法研究[J];運(yùn)籌與管理;2012年06期
5 崔春生;;基于泛函網(wǎng)絡(luò)的組合推薦算法[J];系統(tǒng)工程理論與實(shí)踐;2014年04期
6 周佳;羅鐵堅(jiān);;一種基于內(nèi)容關(guān)聯(lián)的學(xué)術(shù)資源協(xié)同推薦算法[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2013年01期
7 高靈渲;張巍;霍穎翔;滕少華;;改進(jìn)的聚類模式過濾推薦算法[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
8 李汶華;熊曉棟;郭均鵬;;一種基于案例推理和協(xié)商的群體推薦算法[J];系統(tǒng)工程;2013年11期
9 廖春華;杜建強(qiáng);程春雷;李智彪;;改進(jìn)的偏最小二乘回歸推薦算法[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
10 范進(jìn);;基于多元混合準(zhǔn)則模糊模型的個(gè)性化推薦算法[J];華東經(jīng)濟(jì)管理;2007年02期
相關(guān)會(huì)議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號(hào):1670188
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1670188.html