多發(fā)送或多接收認(rèn)證碼的新構(gòu)造
本文關(guān)鍵詞: 有限域 認(rèn)證碼 仲裁 多項(xiàng)式 保密 辛幾何 多接收 出處:《中國(guó)民航大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:保密和認(rèn)證是更好地保障信息安全的兩種主要手段。但是,認(rèn)證系統(tǒng)既能夠具備保密功能,也能夠不具備保密功能。為防止發(fā)方與收方彼此欺騙,增加一個(gè)絕對(duì)可以信賴的仲裁方來(lái)處理內(nèi)部糾紛,進(jìn)而構(gòu)成具有可信仲裁方的認(rèn)證碼,簡(jiǎn)稱A~2-碼。本文的主要研究目的是構(gòu)造具備保密功能的A~2-碼和多接收認(rèn)證碼,并且獲得了兩類新的認(rèn)證碼。主要結(jié)果為:一是基于有限域上的多項(xiàng)式構(gòu)造了兩個(gè)具備保密功能的A~2-碼;二是利用有限域上的辛幾何構(gòu)造了一類多接收認(rèn)證碼。證明了兩類認(rèn)證碼的合理性。然后,充分運(yùn)用多項(xiàng)式的性質(zhì)、線性方程組理論和辛幾何的子空間結(jié)構(gòu)及其計(jì)數(shù)原理,計(jì)算相關(guān)參數(shù)以及在加密密鑰集合、解密密鑰集合和信源集合都遵循均勻分布的條件下,被攻擊成功的最大概率。最后,將所構(gòu)造的兩個(gè)具備保密功能的A~2-碼與已有A~2-碼進(jìn)行比較,本文的構(gòu)造更能節(jié)約存儲(chǔ)空間,更好地防御內(nèi)部攻擊,并且具備保密功能。對(duì)構(gòu)造的多接收認(rèn)證碼所受到的來(lái)自發(fā)方的假冒攻擊進(jìn)行仿真。仿真結(jié)果充分表明隨著發(fā)方假冒攻擊的次數(shù)不斷增多,被攻擊成功的概率趨向于穩(wěn)定。同時(shí),也充分證明被攻擊成功的概率的實(shí)際值要遠(yuǎn)遠(yuǎn)小于被攻擊成功的最大概率的理論值。
[Abstract]:Confidentiality and authentication are the two main means to better protect the security of information. However, the authentication system can not only have the function of confidentiality, but also can not have the function of confidentiality, in order to prevent the sender and the receiver from cheating each other, An absolutely reliable arbiter is added to deal with internal disputes, and then the authentication code of a trusted arbiter is formed. The main purpose of this paper is to construct a secure AF2-code and a multi-receive authentication code. Two kinds of new authentication codes are obtained. The main results are as follows: one is to construct two secure Ag-2- codes based on the polynomials over finite fields; Secondly, a class of multi-receiving authentication codes is constructed by using symplectic geometry in finite fields. The rationality of the two kinds of authentication codes is proved. Then, the properties of polynomial, the theory of linear equations, the subspace structure of symplectic geometry and its counting principle are fully used. Calculate the relevant parameters and the maximum probability of being attacked successfully under the condition that the encryption key set, decryption key set and source set all follow the condition of uniform distribution. Comparing the two AF2-codes with security function with the existing AH2-codes, the structure of this paper can save storage space and defend against internal attacks. The simulation results show that the number of counterfeiting attacks is increasing with the increase of the number of counterfeiting attacks by the sender. The probability of successful attack tends to be stable. At the same time, it is fully proved that the actual value of successful attack probability is much smaller than the theoretical value of the maximum probability of successful attack.
【學(xué)位授予單位】:中國(guó)民航大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O157.4;TP309
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Shang-di CHEN;Hao MA;;Construction of Authentication Codes with Double Arbiters over Symplectic Geometry[J];Acta Mathematicae Applicatae Sinica;2015年04期
2 Chen Shangdi;Zhang Xiaollian;Ma Hao;;Two constructions of A~3-codes from projective geometry in finite fields[J];The Journal of China Universities of Posts and Telecommunications;2015年02期
3 Shang-di CHEN;Da-wei ZHAO;;Two Constructions of Optimal Cartesian Authentication Codes from Unitary Geometry over Finite Fields[J];Acta Mathematicae Applicatae Sinica(English Series);2013年04期
4 陳尚弟;趙大偉;;利用有限域上酉幾何構(gòu)作帶仲裁的認(rèn)證碼[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2012年19期
5 ;A Construction of Authentication Codes with Arbitration from Vector Spaces over Finite Fields[J];數(shù)學(xué)研究與評(píng)論;2011年02期
6 孔德寶;南基洙;;利用等價(jià)矩陣標(biāo)準(zhǔn)形構(gòu)造帶仲裁的認(rèn)證碼(英文)[J];黑龍江大學(xué)自然科學(xué)學(xué)報(bào);2010年01期
7 郭軍;;利用有限仿射幾何構(gòu)作帶仲裁的認(rèn)證碼[J];高師理科學(xué)刊;2007年01期
8 杜慶靈,張利民;多接收多重認(rèn)證碼的有關(guān)邊界和構(gòu)造[J];電子與信息學(xué)報(bào);2002年08期
9 馬文平,王新梅;基于酉幾何的等概的具有仲裁的認(rèn)證碼的構(gòu)造[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);2001年02期
10 馬文平,王新梅;基于辛空間的具有仲裁的認(rèn)證碼的構(gòu)造[J];計(jì)算機(jī)學(xué)報(bào);1999年09期
,本文編號(hào):1547816
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1547816.html