基于Dirichlet過程的空間極值模型參數(shù)估計方法研究及其在降水極值分布的應用
發(fā)布時間:2018-01-18 11:45
本文關鍵詞:基于Dirichlet過程的空間極值模型參數(shù)估計方法研究及其在降水極值分布的應用 出處:《西南交通大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 廣義帕累托分布(GPD) 超門限(POT)閾值的選取 貝葉斯參數(shù)估計 狄利克萊過程模型 高斯連接模型
【摘要】:對于國內(nèi)的自然災害分析方面,洪澇災害是幾種常見的自然災害之一,目前對于極端天氣氣候事件的不斷發(fā)生,已引起科學界和社會的極大關注,因為極值氣候或者自然災害的發(fā)生對生產(chǎn)生活造成了重要的影響,對經(jīng)濟造成了嚴重了損失,由于它的研究對象發(fā)生頻率低損失程度大而特別具有吸引力,尤其目前對精算人員而言,吸引力更是巨大,因為精算人員最關心的是損失數(shù)據(jù)的尾部準確性。作為一種對隨機現(xiàn)象的研究,截止目前,最近幾十年,極值理論才被大家,被研究學者越來越重視,并開始對它建立模型進行研究,而最早的極值理論的啟蒙源于19世紀,這期間停滯了很長一段時間。極值理論的應用最早是在工程研究方面的應用,現(xiàn)如今已經(jīng)廣泛應用于保險、金融等各個領域。本文基于北京某保險公司實際降雨量數(shù)據(jù),極端稀有事件具有概率小、損失強度高等特征,其事故的發(fā)生會造成直接或者間接的不同程度上的經(jīng)濟損失,特別是針對保險公司針對極值氣候具有非常關鍵的指導作用,因此,對極端稀有事件的準確預測尤為重要。目前,對極端稀有事件的預測廣泛采用的方法的方法是極值理論然而極值理論對閾值的選取極為敏感,并且是使用的主觀的判斷,以前的對參數(shù)的估計也沒有相關明確的理論支持,本論文通過對數(shù)據(jù)進行篩選,挑選超過閾值以上的數(shù)據(jù)集進行研究,采用廣義帕累托分布模型(簡稱"GPD")建立模型,并運用最大似然估計參數(shù)(MLE),MOM等方法進行參數(shù)的估計,并作出了優(yōu)缺點的比較,然后運用貝葉斯理論構造的先驗分布和馬爾可夫鏈蒙特卡羅(簡稱"MCMC")方法構造的后驗分布對參數(shù)進行估計,最后會涉及到利用狄利克雷過程(The Dirichlet process簡稱:"DP")建立模型后的檢驗或者利用混合正態(tài)分布建立模型進行檢驗,本文用到的極值理論分布的方法有:超門限峰值(簡稱:POT),廣義帕累托分布(簡稱"GPD"),論文還包括了閾值的選取,厚尾的診斷,GPD的運用,MLE的參數(shù)估計方法,貝葉斯的先驗分布和MCMC的后驗分布,最后通過實際的例子作為實證分析,得出結論。最后得出的結果是對于全國降雨量的數(shù)據(jù),針對極值理論的小概率的預測,發(fā)現(xiàn)廣義帕累托分布模型更精準,更有效。
[Abstract]:For the analysis of natural disasters in China, flood disaster is one of several common natural disasters. At present, the continuous occurrence of extreme weather and climate events has attracted great attention of the scientific community and society. Because the extreme climate or natural disasters have an important impact on the production and life, have caused serious losses to the economy, because of its low frequency of loss of the object of study, it is particularly attractive. Especially for the actuary, the attraction is even more great, because the actuarial staff is most concerned about the tail accuracy of loss data. As a study of random phenomena, so far, in recent decades. The extreme value theory has just been paid more and more attention to by researchers, and began to study its model, and the earliest enlightenment of extreme value theory originated in 19th century. The application of extreme value theory was first applied in engineering research, but now it has been widely used in insurance. Based on the actual rainfall data of an insurance company in Beijing, extreme rare events are characterized by small probability and high loss intensity. The occurrence of the accident will cause direct or indirect economic losses in varying degrees, especially for the insurance companies for extreme climate has a very critical role in guiding. Accurate prediction of extreme rare events is particularly important. At present, extreme value theory is widely used to predict extreme rare events. However, extreme value theory is very sensitive to the selection of threshold. And the use of subjective judgment, the previous estimation of the parameters are not related to clear theoretical support, this paper through the screening of data, the selection of data set above the threshold for research. The generalized Pareto distribution model ("GPD") is used to establish the model, and the maximum likelihood estimation method is used to estimate the parameters, and the advantages and disadvantages are compared. Then the parameters are estimated by using the prior distribution constructed by Bayesian theory and the posterior distribution constructed by Markov chain Monte Carlo ("MCMC") method. Finally, it will involve the use of the Dirichlet process ("DP") using the Delikley process. The test after the establishment of the model or the use of mixed normal distribution to establish the model to test. The methods of extreme value distribution used in this paper are as follows: Super threshold peak (GPD), generalized Pareto distribution (abbreviated as "GPD"). The paper also includes the selection of threshold and the diagnosis of thick tail. GPD uses the parameter estimation method of MLE, the prior distribution of Bayes and the posteriori distribution of MCMC. Finally, an example is given as an empirical analysis. The final result is that the generalized Pareto distribution model is more accurate and effective for the data of national rainfall and the prediction of the small probability of extreme value theory.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F224;F842.3
【共引文獻】
相關期刊論文 前10條
1 殷桂梁;伍麒伊;;基于UKF和IGG改進聚類算法的特高壓交流輸電線路參數(shù)辨識[J];電工電能新技術;2017年06期
2 羅誠安;于惠鈞;李林;閔婕;;局部陰影條件下基于MMC換流器的光伏并網(wǎng)[J];湖南工業(yè)大學學報;2017年02期
3 曾奕銘;張慧媛;龔仁敏;;一種對配網(wǎng)繼電保護影響最小的分布式電源的最優(yōu)接入方式[J];電測與儀表;2017年10期
4 張慶超;易樂釗;;基于微擾法的不換位輸電線路相模變換[J];電力系統(tǒng)保護與控制;2017年10期
5 金卓R,
本文編號:1440819
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1440819.html
最近更新
教材專著