激波加載單元體球陣列時的流場和非穩(wěn)態(tài)阻力研究
本文關(guān)鍵詞:激波加載單元體球陣列時的流場和非穩(wěn)態(tài)阻力研究 出處:《浙江理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 激波 單元體模型球陣 周期性邊界 相互干涉 數(shù)值模擬 非穩(wěn)態(tài)阻力力系數(shù)
【摘要】:激波與固體顆粒群的相互作用問題是超音速氣固兩相流研究領(lǐng)域的一個重要課題,其研究成果在航空航天、醫(yī)療衛(wèi)生、安全防控等領(lǐng)域都有著重要的應(yīng)用。所以對于激波與顆粒群相互作用機(jī)理的進(jìn)一步研究有助于超音速氣固兩相流理論的發(fā)展和完善以及工業(yè)生產(chǎn)相關(guān)技術(shù)的改進(jìn)。本文基于ICEM、Fluent等軟件組成的CFD計算平臺,以及Origin、Tecplot等后處理軟件,數(shù)值模擬了激波加載下三種周期性邊界單元體模型球陣的周圍流場和非穩(wěn)態(tài)阻力。通過對壓力云圖和非穩(wěn)態(tài)阻力系數(shù)變化曲線的同步對比,揭示了單元體模型球陣非穩(wěn)態(tài)阻力的產(chǎn)生機(jī)理和變化規(guī)律。本文研究的主要內(nèi)容和結(jié)論如下:1、對單元體內(nèi)不同球的阻力系數(shù)曲線進(jìn)行對比分析,發(fā)現(xiàn)單元體內(nèi)阻力系數(shù)變化規(guī)律具有穩(wěn)定性、相似性,證明了將阻力系數(shù)模型擴(kuò)展到顆粒群中的可行性。2、對于目標(biāo)單元體中的單個球,其阻力系數(shù)變化規(guī)律受到入射激波、前排球衍射激波、同排球和后排球反射激波以及激波-激波相互作用后形成的各種波形結(jié)構(gòu)的影響。所以要比單球、雙球、四球等模型受力復(fù)雜得多。阻力系數(shù)變化規(guī)律為先急劇增到到峰值,在單調(diào)下降到一個谷值,隨后繼續(xù)增到到第二個峰值,再波動下降出現(xiàn)一個最小值波谷,最后在0附近震蕩并逐漸趨于穩(wěn)定。3、在入射激波與單元體相互作用階段(大概對應(yīng)無量綱時間t’=1~3),入射激波陣面與單元體內(nèi)球的相對位置決定了阻力系數(shù)的變化趨勢,即當(dāng)激波陣面處于球前駐點(diǎn)到赤道位置時阻力系數(shù)上升,當(dāng)激波陣面處于赤道到后主點(diǎn)位置時阻力系數(shù)下降。4、對于單元體A,阻力系數(shù)峰值隨著空隙比(無量綱間距)的增大而減小,并且空隙比越大,在入射激波與單元體相互作用結(jié)束之后阻力系數(shù)越容易趨于穩(wěn)定。5、對于A、B、C三種單元體來說,阻力系數(shù)都隨著馬赫數(shù)的增大而減小,且曳馬赫數(shù)越大,入射激波與單元體相互作用結(jié)束后阻力系數(shù)越容易趨于穩(wěn)定。6、在模型球陣中的前后排球(垂直與激波來流方向)對周圍流場和激波結(jié)構(gòu)的影響要比同排相鄰球大。7、在所有工況條件下,單元體阻力系數(shù)變化曲線的第二波峰都高于第一波峰,造成這現(xiàn)象的主要原因是因?yàn)榧げǖ亩畏瓷洹?br/>[Abstract]:The interaction between shock wave and solid particle group is an important subject in the field of supersonic gas-solid two-phase flow. Therefore, the further study of the interaction mechanism between shock wave and particle group is helpful to the development and perfection of supersonic gas-solid two-phase flow theory and the improvement of related technology in industrial production. This article is based on ICEM. Fluent and other software composed of CFD computing platform, and original Tecplot and other post-processing software. The flow field and unsteady resistance around the spherical array of three periodic boundary element models under shock loading are numerically simulated. The mechanism and variation of unsteady resistance of the spherical array in the unit model are revealed. The main contents and conclusions of this paper are as follows: 1. The resistance coefficient curves of different spheres in the unit are compared and analyzed. It is found that the variation law of resistance coefficient is stable and similar. It is proved that it is feasible to extend the resistance coefficient model to particle group for a single sphere in the target unit. The law of change of drag coefficient is influenced by incident shock wave, diffraction shock wave of front volleyball, all kinds of wave structure formed by interaction of reflected shock wave and shock wave with volleyball and rear volleyball, so it is more than single ball and double ball. The variation law of resistance coefficient is that the resistance coefficient increases to the peak value at first, decreases to a valley value monotonously, then continues to increase to the second peak value, and then the fluctuation decreases to a minimum trough. Finally, it oscillates near 0 and tends to be stable gradually. 3, at the stage of interaction between incident shock wave and unit body (approximately corresponding to dimensionless time t ~ 1 ~ (-1) ~ (3)). The relative position of the incident shock front and the sphere inside the element determines the variation trend of the drag coefficient, that is, the resistance coefficient increases when the shock front is at the stop point in front of the ball to the equator position. When the shock front is at the position from the equator to the rear main point, the drag coefficient decreases by .4.The peak value of the drag coefficient decreases with the increase of the void ratio (dimensionless spacing), and the larger the void ratio is. When the interaction between incident shock wave and the element body is finished, the resistance coefficient tends to be stable. 5. For the three kinds of unit bodies, the resistance coefficient decreases with the increase of Mach number. The larger the number of drag Mach is, the easier the resistance coefficient tends to be stable when the interaction between incident shock wave and element body is finished. The influence of the front and back volleyball (vertical and shock wave direction) on the surrounding flow field and shock wave structure in the model spherical array is larger than that in the same row adjacent sphere. The second peak of the resistance coefficient curve is higher than the first wave peak, which is mainly caused by the secondary reflection of shock wave.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O354.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳子牛;白晨媛;李娟;陳梓鈞;汲世祥;王聃;王文斌;徐藝哲;姚瑤;;高超聲速飛行器流動特征分析[J];航空學(xué)報;2015年01期
2 胡曉強(qiáng);仇立平;李全民;;胰島素的無針注射技術(shù)[J];中華全科醫(yī)師雜志;2014年09期
3 亓洪訓(xùn);張?zhí)O;章利特;施紅輝;黃保乾;;激波加載固定單雙球模型有效阻力測量[J];浙江理工大學(xué)學(xué)報;2013年02期
4 張?zhí)O;亓洪訓(xùn);章利特;施紅輝;黃保乾;;激波驅(qū)動顆粒群加速效果優(yōu)化的實(shí)驗(yàn)研究[J];浙江理工大學(xué)學(xué)報;2013年01期
5 馬世宏;;體外沖擊波碎石機(jī)的現(xiàn)狀及發(fā)展[J];醫(yī)療衛(wèi)生裝備;2010年12期
6 章利特;施紅輝;王超;董若凌;賈會霞;;激波與可運(yùn)動顆粒群相互作用反射與透射機(jī)理實(shí)驗(yàn)研究[J];應(yīng)用力學(xué)學(xué)報;2010年02期
7 田漢波;;淺談無針注射技術(shù)[J];醫(yī)療衛(wèi)生裝備;2010年04期
8 張博;李斌;沈正祥;解立峰;;激波與固體顆粒群相互作用實(shí)驗(yàn)研究[J];實(shí)驗(yàn)流體力學(xué);2009年03期
9 張曉娜;岳樹元;章利特;施紅輝;;激波驅(qū)動的氣固兩相流力學(xué)特性研究[J];水動力學(xué)研究與進(jìn)展A輯;2008年05期
10 趙玉新;易仕和;何霖;程忠宇;田立豐;;激波與湍流相互作用的實(shí)驗(yàn)研究[J];科學(xué)通報;2007年02期
,本文編號:1437874
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1437874.html