基于近場(chǎng)聲學(xué)的超透鏡成像改進(jìn)方法研究
本文關(guān)鍵詞:基于近場(chǎng)聲學(xué)的超透鏡成像改進(jìn)方法研究 出處:《中北大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 近場(chǎng)聲學(xué) 聲子晶體 負(fù)折射 聲學(xué)超透鏡 倏逝波
【摘要】:近場(chǎng)聲學(xué)是近年來(lái)在光學(xué)飛速發(fā)展的基礎(chǔ)上發(fā)展起來(lái)的,該技術(shù)在保密防偽、軍事偵察、醫(yī)用檢查、水下探測(cè)、等各個(gè)方面獲得了廣泛的應(yīng)用,引起人們的關(guān)注。近場(chǎng)聲全息技術(shù)作為全息技術(shù)的一種,是光全息基礎(chǔ)上發(fā)展起來(lái)的,本文對(duì)基于空間Fourie變換的近場(chǎng)聲全息進(jìn)行了研究,分析了近場(chǎng)聲全息在成像中產(chǎn)生誤差的原因,并充分利用聲學(xué)超材料透鏡的完美成像性質(zhì)有針對(duì)性的對(duì)此進(jìn)行改進(jìn),對(duì)提高近場(chǎng)聲全息的分辨率,準(zhǔn)確識(shí)別和定位聲源具有指導(dǎo)意義。本文從聲波輻射理論入手,對(duì)理想流體介質(zhì)中穩(wěn)態(tài)小振幅聲波場(chǎng)分別在平面、柱面以及球面坐標(biāo)系下的Helmholtz方程求解,詳細(xì)研究了基于空間Fourie變換的近場(chǎng)聲全息在不同坐標(biāo)系下的算法實(shí)現(xiàn)以及誤差產(chǎn)生原因。產(chǎn)生誤差原因有:(1)全息面上的聲壓傳感器的離散分布帶來(lái)的“窗效應(yīng)”;(2)實(shí)測(cè)信號(hào)和分布在孔徑周圍無(wú)限多個(gè)“虛像”造成卷繞誤差;(3)攜帶聲源細(xì)節(jié)信息的倏逝波只存在于近場(chǎng)中,而全息面布置位置離聲源較遠(yuǎn),丟失聲源細(xì)節(jié)信息。通過(guò)第三章對(duì)亞波長(zhǎng)聲學(xué)超材料透鏡的成像研究,因負(fù)折射聲子晶體對(duì)攜帶聲源細(xì)節(jié)信息的倏逝波具有放大作用,所以倏逝波在通過(guò)超透鏡后才開(kāi)始衰減,受此啟發(fā),本文提出創(chuàng)新思想,即設(shè)計(jì)亞波長(zhǎng)聲學(xué)探頭置于聲源近場(chǎng)中,將聲源信息先匯聚于一點(diǎn),再在聚焦點(diǎn)用聲傳感器采集并重建。該方法不僅減小了因離散采集帶來(lái)的誤差,同時(shí)也將近場(chǎng)中的倏逝波一并重建,采集到的聲源信息完整,成像效果效果良好。文中運(yùn)用運(yùn)用COMSOL軟件對(duì)聲學(xué)超透鏡進(jìn)行了建模,并模擬仿真了點(diǎn)源通過(guò)透鏡的成像效果,像點(diǎn)聲壓值與物點(diǎn)聲壓值非常相近,成像效果良好,為上文創(chuàng)新思想提供有力的理論證據(jù)。
[Abstract]:Near-field acoustics has been developed in recent years on the basis of the rapid development of optics. The technology has been widely used in security, military reconnaissance, medical inspection, underwater detection, and so on. As a kind of holography technology, the near-field acoustic holography is developed on the basis of optical holography. In this paper, the near-field acoustic holography based on spatial Fourie transform is studied. The causes of errors in near-field acoustic holography are analyzed and the resolution of near-field acoustic holography is improved by making full use of the perfect imaging properties of acoustic metamaterial lens to improve the resolution of near-field acoustic holography. It is significant to identify and locate the sound source accurately. This paper starts with the theory of sound wave radiation, and the steady state small amplitude acoustic wave field in the ideal fluid medium is respectively in the plane. The Helmholtz equations in cylindrical and spherical coordinates are solved. The algorithm realization of near-field acoustic holography based on spatial Fourie transform in different coordinate systems and the cause of error are studied in detail. The "window effect" caused by the discrete distribution of the acoustic pressure sensor on the holographic surface; (2) the winding error caused by the measured signals and the infinite "virtual images" distributed around the aperture; 3) the evanescent wave with detail information of sound source only exists in the near field, but the position of the holographic plane is far away from the sound source, and the detail information of the sound source is lost. In chapter 3, the imaging of subwavelength acoustic metamaterial lens is studied. Because the negative refraction phonon crystal can amplify the evanescent wave which carries the detail information of the sound source, the evanescent wave only begins to decay after passing through the superlens. The sub-wavelength acoustic probe is designed to be placed in the near field of the sound source, the sound source information is gathered at a point first, and then the acoustic sensor is used to collect and reconstruct the sound source information in the focus. This method not only reduces the error caused by discrete acquisition. At the same time, the evanescent wave in the near field is reconstructed together, the sound source information collected is complete, and the imaging effect is good. In this paper, we use COMSOL software to model the acoustic superlens. The imaging effect of point source passing through lens is simulated. The image point sound pressure value is very close to the object point sound pressure value, and the imaging effect is good, which provides strong theoretical evidence for the above innovative ideas.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O429
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 燕文進(jìn);許麗萍;溫廷敦;韓建寧;;基于聲全息的超透鏡成像改進(jìn)方法研究[J];科學(xué)技術(shù)與工程;2016年33期
2 曹躍祖;田益民;李福蕓;;圓孔衍射與瑞利判據(jù)的可視化研究[J];北京印刷學(xué)院學(xué)報(bào);2015年06期
3 韓建寧;楊鵬;張璐;田二明;;基于增強(qiáng)倏逝波的聲透鏡光聲成像系統(tǒng)設(shè)計(jì)[J];科學(xué)技術(shù)與工程;2014年25期
4 杜藝;劉文國(guó);葛帥;;基于傅里葉變換的條帶噪聲去除方法研究[J];測(cè)繪與空間地理信息;2014年08期
5 倪旭;張小柳;盧明輝;陳延峰;;聲子晶體和聲學(xué)超構(gòu)材料[J];物理;2012年10期
6 吳玲玲;王星;陳靖;武繼安;陳靖;;基于Talbot-Moiré法的長(zhǎng)焦透鏡焦距測(cè)量的極限精度分析[J];應(yīng)用光學(xué);2011年04期
7 辛雨;張永斌;畢傳興;陳心昭;;基于空間傅里葉變換的平面近場(chǎng)聲全息中信噪比估計(jì)方法研究[J];計(jì)量學(xué)報(bào);2010年06期
8 鄧江華;劉獻(xiàn)棟;單穎春;;傳播波與倏逝波對(duì)全息重建影響的研究[J];聲學(xué)技術(shù);2009年05期
9 王紹波;郭業(yè)才;王帥;;基于自適應(yīng)低通濾波的超聲醫(yī)學(xué)圖像增強(qiáng)算法[J];中國(guó)醫(yī)學(xué)影像技術(shù);2009年03期
10 談蘇慶,高文琦;負(fù)折射材料的非尋常折射[J];大學(xué)物理;2005年08期
相關(guān)碩士學(xué)位論文 前1條
1 劉志明;聲子晶體帶隙特性研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2005年
,本文編號(hào):1432303
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1432303.html