泛函極小與橢圓型微分方程解的可積性
發(fā)布時(shí)間:2018-01-13 13:05
本文關(guān)鍵詞:泛函極小與橢圓型微分方程解的可積性 出處:《河北大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 極小 局部正則性 局部有界性 極值原理 可積性
【摘要】:本文研究積分泛函極小點(diǎn)的局部正則性其中f(x,z,s)滿足這里f0(x,s,z)滿足某增長條件,且f1(x,s,z)滿足某控制條件.另外,本文還研究非齊次橢圓方程解的局部正則性和局部有界性此外,在積分泛函中當(dāng)f(x,z)滿足某些單調(diào)性條件時(shí)在向量域上研究了泛函極小的極小值原理,以及與之對(duì)應(yīng)的橢圓方程組弱解的極大值和極小值原理.最后,對(duì)A-調(diào)和方程很弱解的高階可積性進(jìn)行了研究.
[Abstract]:In this paper, we study the local regularity of the minimum point of the integral functional, where f ~ (x) ~ (()) satisfies a certain growth condition, and f _ (1) ~ (x ~ (()) ~ () ~ () satisfies a certain control condition. In this paper, we also study the local regularity and local boundedness of solutions of inhomogeneous elliptic equations. In addition, we study the minima principle of functional minimization in vector domain when fnxnz) satisfies some monotonicity conditions in integral Functionals. And the maximum and minimum principle of the weak solutions of the corresponding elliptic equations. Finally, the high order integrability of the very weak solutions of the A- harmonic equations is studied.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175.25
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 GAO HongYa;;Regularity for solutions to anisotropic obstacle problems[J];Science China(Mathematics);2014年01期
2 高紅亞,田會(huì)英;LOCAL REGULARITY RESULT FOR SOLUTIONS OF OBSTACLE PROBLEMS[J];Acta Mathematica Scientia;2004年01期
,本文編號(hào):1418951
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1418951.html
最近更新
教材專著