天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基本解方法與Trefftz方法基于三維拉普拉斯方程的比較

發(fā)布時(shí)間:2018-01-11 00:31

  本文關(guān)鍵詞:基本解方法與Trefftz方法基于三維拉普拉斯方程的比較 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: Trefftz方法 多重尺度技術(shù) 基本解方法 LOOCV


【摘要】:基本解方法和Trefftz方法都是解決齊次偏微分方程邊界值問題的兩種有效的無網(wǎng)格方法。在Trefftz方法中,近似解由一系列的T完備基函數(shù)逼近,而在基本解方法中,近似解由齊次線性微分方程的基本解來逼近。盡管這兩種方法都有很長(zhǎng)的發(fā)展歷史,在物理學(xué)的各個(gè)領(lǐng)域都有廣泛的應(yīng)用,但在數(shù)值實(shí)現(xiàn)方面都有各自的弊端。Trefftz方法的基函數(shù)本質(zhì)上是多項(xiàng)式函數(shù),因此當(dāng)用來逼近近似解的T完備基函數(shù)數(shù)量增多時(shí),會(huì)導(dǎo)致基函數(shù)的次數(shù)呈現(xiàn)指數(shù)型增大,從而使所生成的線性系統(tǒng)方程的條件數(shù)呈指數(shù)型增大,則會(huì)造成線性系統(tǒng)方程的嚴(yán)重病態(tài)性。而基本解方法需要在問題域外部的譜邊界上分布資源點(diǎn)來消除基本解的奇異性,但資源點(diǎn)的最佳分布位置一直是一個(gè)很有挑戰(zhàn)性的問題。若資源點(diǎn)最佳位置能夠確定的話,那么基本解方法則是最有效的邊界無網(wǎng)格方法。近年來,Trefftz方法在減弱病態(tài)性方面有了很大的發(fā)展,特別是使用多重尺度技術(shù)在減小線性系統(tǒng)方程的條件數(shù)方面有很顯著的改善,這樣使得Trefftz方法在解決有挑戰(zhàn)性的問題時(shí)能夠更加有效。本文中同樣也使用多重尺度技術(shù)來研究Trefftz方法在求解三維拉普拉斯方程在不同的復(fù)雜三維問題域上的有效性。同時(shí),基本解方法在在確定資源點(diǎn)最佳分布位置方面也有了很大的突破,尤其是近年來使用LOOCV算法使得基本解方法呈現(xiàn)出很高的近似解精確度。基本解方法在求解帶有調(diào)和邊界條件的微分方程時(shí)相當(dāng)有效,但在求解帶有非調(diào)和邊界條件的微分方程時(shí)效果并不理想。在本文中,同樣也使用LOOCV算法來確定資源點(diǎn)最佳位置,同時(shí)提出了一個(gè)更簡(jiǎn)單有效的方法,進(jìn)一步改善了求解帶有非調(diào)和邊界條件的微分方程的精確度,并且在耗時(shí)上也有明顯改進(jìn);谑褂眠@些新的方法,本文中對(duì)兩種方法在不規(guī)則復(fù)雜三維問題域下對(duì)精確性、穩(wěn)定性以及時(shí)間效率上進(jìn)行了比較。
[Abstract]:The basic solution method and the Trefftz method are two effective meshless methods for solving the boundary value problem of homogeneous partial differential equations. In the Trefftz method. The approximate solution is approximated by a series of T complete basis functions, while in the basic solution method, the approximate solution is approximated by the basic solution of homogeneous linear differential equation, although both methods have a long history of development. It has been widely used in various fields of physics, but it has its own drawbacks in numerical realization. The basis function of Trefftz method is essentially polynomial function. Therefore, when the number of T complete basis functions used to approximate the approximate solution increases, the number of basis functions will increase exponentially, and the condition number of the generated linear system equations will increase exponentially. The fundamental solution method needs to distribute resource points on the spectral boundary outside the problem domain to eliminate the singularity of the fundamental solution. However, the optimal location of resource points is always a challenging problem. If the optimal location of resource points can be determined, the basic solution method is the most effective boundary meshless method in recent years. The Trefftz method has made great progress in reducing the ill-condition, especially in reducing the condition number of linear system equations by using multi-scale technique. In this way, the Trefftz method can be more effective in solving challenging problems. In this paper, we also use multi-scale technique to study the Trefftz method in solving three-dimensional Laplacian equations. The validity of the same complex three-dimensional problem field. The basic solution method has also made a great breakthrough in determining the optimal distribution of resource points. Especially in recent years, LOOCV algorithm is used to make the basic solution method present a high accuracy of approximate solution. The basic solution method is very effective in solving differential equations with harmonic boundary conditions. However, the effect of solving differential equations with non-harmonic boundary conditions is not satisfactory. In this paper, LOOCV algorithm is also used to determine the optimal location of resource points, and a simpler and more effective method is proposed. The accuracy of solving differential equations with nonharmonic boundary conditions is further improved, and the time consuming is also improved obviously. Based on the use of these new methods. In this paper, we compare the accuracy, stability and time efficiency of the two methods in irregular and complex three-dimensional problem domain.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O241.82
,

本文編號(hào):1407451

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1407451.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6c10a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲中文在线观看小视频| 国产精品欧美激情在线| 清纯少妇被捅到高潮免费观看| 亚洲中文字幕高清乱码毛片| 日韩人妻欧美一区二区久久| 风韵人妻丰满熟妇老熟女av| 亚洲高清一区二区高清| 欧美精品一区二区三区白虎| 91日韩欧美在线视频| 在线观看视频日韩精品| 欧美日韩国产免费看黄片| 国产午夜精品福利免费不| 麻豆最新出品国产精品| 日韩丝袜诱惑一区二区| 香蕉尹人视频在线精品| 欧美性欧美一区二区三区| 91亚洲熟女少妇在线观看| 亚洲欧美日韩在线中文字幕| 精品国产亚洲区久久露脸| 日本福利写真在线观看| 色婷婷激情五月天丁香| 亚洲国产精品肉丝袜久久| 国产毛片对白精品看片| 又黄又硬又爽又色的视频| 最近最新中文字幕免费| 国产精品欧美一区两区| 亚洲国产成人av毛片国产| 国产三级视频不卡在线观看| 国产真人无遮挡免费视频一区| 欧美日韩一级aa大片| 激情五月天免费在线观看| 亚洲欧美日韩色图七区| 欧洲精品一区二区三区四区| 亚洲精品日韩欧美精品| 欧美精品久久99九九| 亚洲男人的天堂色偷偷| 四季精品人妻av一区二区三区| 黄色国产精品一区二区三区| 亚洲av秘片一区二区三区| 免费在线播放一区二区| 日韩高清毛片免费观看|