白令海二甲基硫化物的時(shí)空變化研究
本文關(guān)鍵詞:白令海二甲基硫化物的時(shí)空變化研究 出處:《國家海洋局第一海洋研究所》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 二甲基硫化物 DMS 水團(tuán)特征 時(shí)空變化 白令海
【摘要】:生源硫化物是自然界中由生物生產(chǎn)、利用或轉(zhuǎn)化的一類含硫物質(zhì),它們在硫的全球循環(huán)中所起的作用至關(guān)重要。二甲基硫(Dimethylsulfide,DMS)作為海洋中最重要的揮發(fā)性硫化物,其對(duì)全球氣候變化以及酸雨等全球性環(huán)境問題能起到非常重要的影響。β-二甲基巰基丙酸內(nèi)鹽(Dimethylsulfoniopropionate,DMSP)和二甲基亞砜(Dimethyl sulfoxide,DMSO)分別作為DMS的前體物質(zhì)和重要氧化產(chǎn)物,在很大程度上影響著海水中DMS的含量和分布。水團(tuán)作為海洋中重要的水體功能單元,其性質(zhì)的差異直接影響著生源硫化物的生物地球化學(xué)過程。因此,基于水團(tuán)特征來研究生源硫化物的時(shí)空分布特征及其影響因素,有助于更加準(zhǔn)確的把握生源硫化物分布變化的影響機(jī)制,從而為深入研究海洋生源硫?qū)夂颦h(huán)境的影響提供新的思路。極地、亞極地海區(qū)能夠放大全球氣候變化所引起的微觀效應(yīng),從而起到有效的指示作用。本文基于中國第5~7次北極科學(xué)考察白令海調(diào)查實(shí)驗(yàn)數(shù)據(jù),在水團(tuán)劃分的基礎(chǔ)上,分析了白令海各水團(tuán)生源硫化物(DMS、DMSP、DMSO)的時(shí)空變化規(guī)律及其影響因素。得出的主要結(jié)果如下:1、白令海海盆區(qū)有3個(gè)水團(tuán),即上層水、中層水和深層水,其中,上層水具有高溫、低鹽、高溶解氧、高葉綠素、低營養(yǎng)鹽的特征;中層水主要特征為低溫,其他要素濃度水平介于上層水和深層水之間;深層水具有低溫、高鹽、低溶解氧、高營養(yǎng)鹽、低葉綠素的特征,尤其是硅酸鹽濃度較同類海區(qū)同深度水體高很多。白令海中陸架區(qū)有4個(gè)水團(tuán),即白令海陸坡水、白令海陸架冷水團(tuán)、陸架表層暖水和混合變性水,其中,陸架表層暖水具有高溫、低鹽、低營養(yǎng)鹽、低葉綠素特征;陸坡水具有高營養(yǎng)鹽、低葉綠素特征;陸架冷水團(tuán)具有低溫、高溶解氧、高葉綠素特征;混合變性水的性質(zhì)介于陸坡水和冷水團(tuán)之間。北部內(nèi)陸架區(qū)分3個(gè)水團(tuán),即阿納德爾水、阿拉斯加沿岸水和白令海陸架水,阿納德爾水具有低溫、高鹽、高營養(yǎng)鹽、低葉綠素、低溶解氧的特征;阿拉斯加沿岸水則為高溫、低鹽、低營養(yǎng)鹽;白令海陸架水主要特征為高溶解氧、高葉綠素。此外,白令海區(qū)域2012年為冷年(較暖年低2~3°C),2014、2016年為暖年,因此各水團(tuán)溫度2012年最低。2、白令海區(qū)2012年為冷年(較暖年低2~3°C),2014、2016年為暖年。受此影響,白令海二甲基硫化物的濃度和生物周轉(zhuǎn)速率2012年小于2014年和2016年,例外的是北部內(nèi)陸架區(qū)DMSP濃度2012年大于2014和2016年,可能與DMSP充當(dāng)細(xì)胞內(nèi)冷凍保護(hù)劑有關(guān)。二甲基硫化物生物生產(chǎn)速率略高于消耗速率,且生產(chǎn)和消耗速率空間變化趨勢一致。白令海DMSO的水平分布趨勢為:海盆區(qū)中陸架區(qū)北部內(nèi)陸架區(qū);DMSP則為:中陸架區(qū)海盆區(qū)北部內(nèi)陸架區(qū);DMS水平分布無明顯規(guī)律。3、白令海海盆區(qū),各水團(tuán)DMS的含量大小為:上層水中層水深層水,各水團(tuán)濃度平均值分別在5~15、2~8和0~1 nmol/L之間;在海盆北部靠近陸坡的區(qū)域,受氣旋式渦流的影響上層DMS高值水舌有明顯向下延伸趨勢;各水團(tuán)DMSPd濃度平均值在2~35 nmol/L之間,而DMSPp平均值在6~110 nmol/L之間;上層水和中層水DMS和DMSPd的分布主要受Chl-a的影響,深層水中溫鹽脅迫影響DMS和DMSPd的分布。中陸架區(qū),表層暖水DMS和DMSP濃度較高,DMS、DMSPd和DMSPp平均值分別在2~11、20~40和27~87 nmol/L;陸坡水和混合水次之,平均值分別在0~2、2~40和18~78 nmol/L;陸架冷水團(tuán)濃度相對(duì)較低,平均值分別在0~2、1~18和14~50 nmol/L;表層暖水、陸架冷水團(tuán)和白令海陸坡水DMS和DMSP分布的受控因素較為復(fù)雜,混合變性水受Chl-a影響明顯。北部內(nèi)陸架區(qū),阿納德爾水中DMS和DMSP濃度最低,DMS、DMSPd和DMSPp平均值分別在0~3、12~28和20~80 nmol/L;白令海陸架水和阿拉斯加沿岸水中較高,平均值分別在1~15、12~47和44~120 nmol/L;白令海陸架水DMS與DMSP受溫鹽的影響明顯,阿拉斯加沿岸水和阿納德爾水影響因素較復(fù)雜。4、白令海DMSOd和DMSOp的分布趨勢一致,其濃度從表層到底層隨水深增加濃度降低,表層水團(tuán)DMSOd和DMSOp濃度均在55 nmol/L以上,底層水團(tuán)則低于25 nmol/L。從水團(tuán)分析發(fā)現(xiàn)海盆區(qū)各水團(tuán)DMSO受DMS氧化和浮游植物合成影響較大;中陸架區(qū)表層暖水主要受生物生產(chǎn)控制;北部內(nèi)陸架區(qū)阿拉斯加沿岸水和白令海陸架水高于阿納德爾水。
[Abstract]:Biogenic sulfide is produced by biological in nature, or by a sort of sulfur substance transformation, they play vital role in the global sulfur cycle. Two methyl sulfide (Dimethylsulfide, DMS) as the most important volatile sulfide in the oceans, the global climate change and global environmental problems and the acid rain can play an effect very important. Beta two methyl mercaptopropionic acid salt (Dimethylsulfoniopropionate, DMSP) and two methyl sulfoxide (Dimethyl sulfoxide, DMSO) were used as the precursors of DMS and oxidation products, to a large extent affects the content and distribution of DMS in seawater in the ocean water. As the important functions of the water unit the nature of the difference, directly affects the biogeochemical process of biogenic sulfide. Therefore, the temporal and spatial distribution characteristics based on the characteristics of water mass of biogenic sulfide and its influencing factors and help To grasp the influence mechanism of biogenic sulfide distribution more accurately, so as to provide new ideas for the research of marine biogenic sulfur effects on climate and environment. The polar, sub polar sea can enlarge the micro effect caused by global climate change, so as to effectively indicative effect. This paper based on the 5~7 Chinese Arctic scientific expedition the Bering Sea survey experimental data, based on the analysis of the water mass division, the Bering Sea water source (DMS, DMSP, DMSO, sulfide) temporal variation and influence factors. The main results are as follows: 1, the Bering Sea basin area has 3 water masses, namely the upper water, middle water and deep water, which the upper water, high temperature, low salinity, high dissolved oxygen, high chlorophyll, low nutrient characteristics; the main characteristics of middle water temperature, among other elements of concentration between upper water and deep water; deep water with low temperature, High salt, low dissolved oxygen and high nutrient, low chlorophyll characteristics, especially the silicate concentration than similar sea with depth of water is much higher in the Bering Sea shelf area. There are 4 water, namely the Bering Sea slope water, Bering Sea shelf water mass, the shelf surface warm water and mixed water, degeneration. The shelf surface warm water with high temperature, low salt, low nutrient, low chlorophyll characteristics; slope water has high nutrient, low chlorophyll characteristics; shelf water mass with low temperature, high dissolved oxygen, high chlorophyll characteristics; the nature between Lu Poshui and the cold water mass mixing modified water. The northern inland shelf to distinguish 3 water masses that is, Anadyr water, Alaska coastal water and the Bering Sea shelf water, Anadyr water with low temperature, high salt, high nutrient, low chlorophyll, low dissolved oxygen; Alaska coastal water is high temperature, low salt, low nutrients; the main characteristics of Bering Sea shelf water is high Dissolved oxygen, high chlorophyll. In addition, the Bering Sea region in 2012 for cold years (warmer years low 2~3 ~ C), 20142016 years for the warm years, so the water temperature in 2012 2012 for a minimum of.2, the Bering Sea cold years (warmer years low 2~3 ~ C), 20142016 years for the warm years. Affected by this the Bering Sea, two methyl sulfide concentration and biological turnover rate less than 2012 in 2014 and 2016, the exception is the northern region of the inner continental shelf of the concentration of DMSP was more than 2012 2014 and 2016, and DMSP may act as intracellular cryoprotectants. Two methyl sulfide biological production rate is slightly higher than the consumption rate, and the production and consumption trend rate the spatial distribution trend. The level of DMSO in the Bering Sea basin is in the continental shelf of the northern shelf region; DMSP: in the continental shelf area of the northern inland basin shelf area; the level of DMS.3 distribution is irregular, the Bering Sea basin, the water content of each group size for DMS The upper layer: deep water of water, the water concentration of the average values are between 5~15,2~8 and 0~1 nmol/L; in the basin near the northern slope region of DMS superstatum by cyclone type vortex water tongue has obvious high value downward trend; the water masses average DMSPd concentration between 2~35 nmol/ L and DMSPp in average 6~110 nmol/L; influence the distribution of upper water and intermediate water DMS and DMSPd mainly by Chl-a, deep water temperature and salt stress distribution of DMS and DMSPd. In the continental shelf area, surface warm water DMS and higher concentrations of DMSP, DMS, DMSPd and DMSPp respectively in 2~11,20~40 and 27~87 nmol/L; Lu Poshui and mixed water the average value of 0~2,2~40 and 18~78 respectively in nmol/L; the continental shelf of the cold water mass concentration is relatively low, the average value of 0~2,1~18 and 14~50 respectively in nmol/L; the warm water, cold water mass and the Bering Sea shelf slope water DMS and DMSP distribution controlled factors The complex, mixed water degeneration affected by Chl-a obviously. The northern inland shelf area, Anadyr water DMS and the lowest DMSP concentration, DMS, DMSPd and DMSPp respectively in 0~3,12~28 and 20~80 nmol/L; high Bering Sea shelf water and Alaska coastal water, the average value of 1~15,12~47 and 44~120 nmol/L respectively in the Bering Sea shelf water and DMS; DMSP effects of temperature and salinity, coastal water and Anadyr water factors in Alaska more complex.4, consistent with the distribution trend of DMSOd in the Bering Sea and DMSOp, its concentration from the surface layer to the bottom layer increases with the water depth decreased the concentration of DMSOd and DMSOp, surface water mass concentration was above 55 nmol/L, the bottom water was less than 25 nmol/L. from the analysis of water masses found basin the water masses of DMSO affected by DMS oxidation and synthesis of phytoplankton; in the continental shelf area of subsurface warm water is mainly affected by the biological production control; the northern inland area of Alaska coastal water and the Bering shelf Sea and sea shelf water is higher than Anadyr water.
【學(xué)位授予單位】:國家海洋局第一海洋研究所
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P734
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薩楚拉;劉桂香;包剛;包玉海;王牧蘭;道日那;;近10年新疆積雪面積時(shí)空變化研究[J];測繪科學(xué);2013年01期
2 薩楚拉;劉桂香;包剛;包玉海;王牧蘭;;近十年蒙古高原積雪面積時(shí)空變化研究[J];內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)漢文版);2012年05期
3 朱利凱;蒙吉軍;;內(nèi)蒙古中部地區(qū)近40年來降水時(shí)空變化[J];干旱區(qū)研究;2010年04期
4 張桂華,周永吉,潘華盛;20世紀(jì)80年代以來黑龍江省氣候變暖的時(shí)空變化[J];黑龍江水專學(xué)報(bào);2003年01期
5 孫才志;李明昱;;遼寧省海岸線時(shí)空變化及驅(qū)動(dòng)因素分析[J];地理與地理信息科學(xué);2010年03期
6 馬麗君;孫根年;馬耀峰;王潔潔;;氣候舒適度對(duì)熱點(diǎn)城市入境游客時(shí)空變化的影響[J];旅游學(xué)刊;2011年01期
7 薩楚拉;劉桂香;包剛;包玉海;王牧蘭;;內(nèi)蒙古積雪面積時(shí)空變化及其對(duì)氣候響應(yīng)[J];干旱區(qū)資源與環(huán)境;2013年02期
8 穆振俠;姜卉芳;;2001年至2010年昆馬力克河流域積雪時(shí)空變化特性分析[J];資源科學(xué);2013年01期
9 李景林;張山清;普宗朝;王命全;王勝蘭;趙書琴;;近50a新疆氣溫精細(xì)化時(shí)空變化分析[J];干旱區(qū)地理;2013年02期
10 姚魯烽;何書金;趙歆;;地理學(xué)時(shí)空變化類論文的寫作[J];地理學(xué)報(bào);2013年07期
相關(guān)會(huì)議論文 前10條
1 薩楚拉;劉桂香;包剛;包玉海;王牧蘭;道日那;;近十年甘肅積雪面積時(shí)空變化研究[A];風(fēng)險(xiǎn)分析和危機(jī)反應(yīng)的創(chuàng)新理論和方法——中國災(zāi)害防御協(xié)會(huì)風(fēng)險(xiǎn)分析專業(yè)委員會(huì)第五屆年會(huì)論文集[C];2012年
2 查良松;郭永芳;吉中會(huì);彭洋;;近50年安徽省氣溫時(shí)空變化研究[A];中國地理學(xué)會(huì)百年慶典學(xué)術(shù)論文摘要集[C];2009年
3 黃成榮;何亞萍;馬雷凱;;1960—2009年新疆氣溫時(shí)空變化及影響因子分析[A];第28屆中國氣象學(xué)會(huì)年會(huì)——S14氣候環(huán)境變化與人體健康[C];2011年
4 王敏珍;鄭山;王式功;尚可政;;1951-2008年中國主要城市風(fēng)效指數(shù)的時(shí)空變化趨勢[A];第28屆中國氣象學(xué)會(huì)年會(huì)——S14氣候環(huán)境變化與人體健康[C];2011年
5 張清雨;;近30年秦嶺山地商洛段林地類型時(shí)空變化及其驅(qū)動(dòng)力[A];中國地理學(xué)會(huì)百年慶典學(xué)術(shù)論文摘要集[C];2009年
6 陳效逑;王恒;;1982-2003年內(nèi)蒙古植被帶和植被覆蓋度的時(shí)空變化[A];中國地理學(xué)會(huì)百年慶典學(xué)術(shù)論文摘要集[C];2009年
7 張淳民;屈燕;栗彥芬;;基于GOSAT衛(wèi)星遙感探測的CO_2和CH_4時(shí)空變化特性分析[A];2012年西部光子學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
8 王N段,
本文編號(hào):1394966
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1394966.html