聯(lián)軸器對(duì)內(nèi)燃機(jī)軸系扭振影響及減振研究
[Abstract]:After the concept of "Belt and Road, Railway first" was put forward, the development of diesel locomotives ushered in new opportunities and challenges. The coupling is the key component of connecting shafting and transmitting torque in internal combustion engine shafting. In the actual operation of diesel locomotive, torsional resonance occurs in the starting condition of shafting and failure of coupling occurs frequently. Therefore, the use of coupling in shafting is of great significance to the safety and reliability of shafting. Taking the shaft coupling of typical diesel locomotive powertrain as the research object, the parameter characteristics of the large stiffness coupling and the high elastic coupling are compared, and the method of simulating the torsional vibration of the shaft system and testing the torsional vibration is adopted. The effect of coupling on torsional vibration characteristics of internal combustion engine shafting is studied. Combined with the simulation and experimental results, the torsional vibration characteristics of the internal combustion engine shaft system corresponding to the fixed stiffness rubber coupling, the spring damping coupling and the large stiffness coupling are analyzed, and the optimization matching strategies of the three types of coupling and shafting are studied. The torsional vibration modes of the three types of coupling shafting all avoid the 3.0 main harmonic excitation of the internal combustion engine, but the 6.0 harmonic or the low 1.0 and 0.5 harmonic excitations of the internal combustion engine will resonate with the shafting. Aiming at the common problem that the impact moment of spring damping coupling is difficult to be measured at the active and passive end, a method of force measurement based on dynamic torsional angle difference and angular acceleration is proposed. The dynamic torsional angle difference and force of shafting coupling are tested and analyzed. The torsional vibration alternating moment, transient inertia moment and impact moment of shafting coupling are obtained. The test results show that the maximum alternating torsional angle difference between peak and peak reaches 31 擄, and the maximum torsional angle is 15.7 擄at the active and passive ends of the coupling. It is proved that the spring damping coupling is the main part of the spring damping coupling under the starting condition. There may be a transient collision at the passive end, corresponding to a maximum inertia torque of 9914 Nm. In view of the failure of spring damping coupling in practical application, the pretightening force of spline sleeve bolt of coupling is checked, and the finite element model of spring damping coupling is established. The maximum inertia moment of coupling under start-up condition is obtained by using the test results of torsional angle difference of coupling. The stress at failure point of coupling is analyzed, and the service life of coupling is estimated by S-N method. The failure stress value is smaller than the yield limit of the coupling, but larger than its fatigue strength limit, so it may cause fatigue failure of the coupling. An optimal matching strategy for shafting with continuous variable stiffness coupling is proposed and successfully applied in a certain internal combustion engine shafting. The shafting matching continuous variable stiffness coupling can not only avoid the main harmonic excitation frequencies such as 3.0 and 6.0 of the internal combustion engine, but also avoid the low harmonic torsional resonance of 1.0 and 0.5 harmonics. The torsional amplitude of the shafting components is controlled effectively, the torsional amplitude of the shafting meets the limit value under the fault condition, and the torsional angle difference between the two ends of the coupling is obviously optimized under the starting condition. To sum up, the test method of coupling force based on dynamic torsional angle difference and angular acceleration is put forward in this paper, which can be used to test the conventional force and impact moment of coupling. An optimal matching strategy for shafting with continuous variable stiffness coupling is proposed, and good results of torsional vibration optimization are obtained.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U262
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐曉剛;;出口孟加拉的新型米軌內(nèi)燃交流傳動(dòng)動(dòng)車組[J];中國(guó)鐵路;2015年04期
2 葉嘉;李濤;曾志龍;陳奕;;軸系扭轉(zhuǎn)振動(dòng)測(cè)試技術(shù)研究綜述[J];船舶工程;2014年05期
3 李曉茜;王剛;呂秉琳;柴卓野;李玩幽;;短路工況下柴油發(fā)電機(jī)組軸系扭振計(jì)算方法及特性研究[J];內(nèi)燃機(jī)工程;2013年02期
4 鄧曉曉;張保成;;內(nèi)燃機(jī)軸系扭轉(zhuǎn)振動(dòng)綜述[J];汽車零部件;2012年01期
5 劉寶;楊雪靜;李巖;;汽輪發(fā)電機(jī)組軸系扭振動(dòng)態(tài)響應(yīng)計(jì)算分析[J];機(jī)電工程技術(shù);2011年12期
6 汪萌生;周瑞平;徐翔;;柴油發(fā)電機(jī)組軸系扭振特性的調(diào)頻處理[J];中國(guó)修船;2011年02期
7 劉輝;項(xiàng)昌樂(lè);;彈性聯(lián)軸器對(duì)動(dòng)力傳動(dòng)系統(tǒng)扭振特性影響研究[J];機(jī)械強(qiáng)度;2009年03期
8 孟宗;劉彬;;回轉(zhuǎn)機(jī)械動(dòng)態(tài)扭矩非接觸測(cè)量的研究[J];計(jì)量學(xué)報(bào);2006年04期
9 賈小勇;徐傳勝;白欣;;最小二乘法的創(chuàng)立及其思想方法[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
10 宋志峰,梅順齊;轉(zhuǎn)軸扭振測(cè)量方法研究[J];現(xiàn)代制造工程;2005年09期
相關(guān)博士學(xué)位論文 前1條
1 華春蓉;內(nèi)燃機(jī)曲軸角振動(dòng)模態(tài)識(shí)別方法的研究及應(yīng)用[D];西南交通大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 劉景明;高速柴油發(fā)電機(jī)組軸系聯(lián)軸器參數(shù)匹配研究[D];西南交通大學(xué);2015年
2 潘飛;新型鋼絲繩彈性聯(lián)軸器設(shè)計(jì)及其彈性阻尼元件特性試驗(yàn)研究[D];重慶大學(xué);2015年
3 張敬義;內(nèi)燃機(jī)軸系彈聯(lián)參數(shù)設(shè)計(jì)方法研究[D];西南交通大學(xué);2012年
4 陳超;汽車發(fā)動(dòng)機(jī)曲軸系統(tǒng)扭轉(zhuǎn)振動(dòng)分析與減振器匹配的研究[D];華南理工大學(xué);2012年
5 石明友;高速列車聯(lián)軸器開(kāi)發(fā)與研究[D];江蘇科技大學(xué);2012年
6 周碩琳;4100柴油機(jī)扭振及簡(jiǎn)諧力矩特性分析[D];西南交通大學(xué);2011年
7 熊龍成;新型中速柴油機(jī)監(jiān)測(cè)診斷技術(shù)研究[D];武漢理工大學(xué);2009年
8 籍慶輝;車輛傳動(dòng)系扭振特性的多體動(dòng)力學(xué)研究[D];重慶大學(xué);2008年
9 郭鋼利;汽輪發(fā)電機(jī)組軸系扭振測(cè)量與分析[D];華北電力大學(xué)(北京);2005年
10 安曉虹;特殊長(zhǎng)方矩陣的極小范數(shù)最小二乘解及其左逆和右逆的快速算法[D];西北工業(yè)大學(xué);2004年
,本文編號(hào):2145591
本文鏈接:http://sikaile.net/shekelunwen/ydyl/2145591.html