寒區(qū)隧道圍巖水熱力耦合數(shù)值分析
本文關(guān)鍵詞: 寒區(qū)隧道 水熱力耦合 凍融循環(huán) 數(shù)值分析 出處:《西安科技大學》2017年碩士論文 論文類型:學位論文
【摘要】:隨著“一帶一路”戰(zhàn)略的深入實施,越來越多的巖土工程建設(shè)必須在高海拔、嚴寒等極端條件下進行,凍融災(zāi)害是寒區(qū)巖土工程的突出問題。凍融環(huán)境下,巖體骨架、冰晶體、未凍水這三種物質(zhì)在溫度、土水勢、壓力與變形等外界因素作用下,相互運動、遷移、擴散與相變,水熱力狀態(tài)相互耦合、相互影響。因此,從水熱力耦合的角度研究巖土工程結(jié)構(gòu)的穩(wěn)定性具有重要的理論及工程意義。本文以西藏“扎墨”公路嘎隆拉隧道為依托,采用有限單元法,對寒區(qū)隧道圍巖的單應(yīng)力場、溫度場、滲流場進行數(shù)值計算,分析了應(yīng)力和位移、凍深、孔隙壓力和滲流速度的分布規(guī)律;對寒區(qū)隧道圍巖多場耦合問題進行數(shù)值計算,分析了應(yīng)力場、溫度場、滲流場的相互影響及變化規(guī)律。研究表明:由于隧道開挖引起的應(yīng)力重分布,隧道斷面圍巖拱頂下沉,仰拱隆起;隧道周邊圍巖出現(xiàn)季節(jié)性凍融圈,最大凍深出現(xiàn)在拱頂處;最大滲流速度發(fā)生在邊墻墻腳處,開挖斷面附近滲透壓力等位面密集,水力坡降大,對巖體的滲透動水壓力較大;由于埋深較淺,圍巖拱頂區(qū)域受隧道內(nèi)壁和山體表面氣溫雙重影響,凍融破環(huán)極度嚴重;在水熱力耦合的作用下,隧道圍巖凍深減小,位移及應(yīng)力增大;經(jīng)過10年的運營,隧道圍巖拱頂下沉量由0.89mm增大為1.89mm,襯砌的最大拉應(yīng)力從0.4MPa增大到了1.3MPa,可見凍融循環(huán)對圍巖及襯砌力學特性影響較大;在寒區(qū)隧道設(shè)計和施工過程中,必須考慮凍脹力的作用,必須考慮溫度場、水分場和應(yīng)力場的相互影響。為減少寒區(qū)隧道凍融災(zāi)害,應(yīng)在隧道洞口和內(nèi)壁采取良好的保溫措施,減小洞內(nèi)外氣溫與圍巖間的熱交換;結(jié)合注漿堵水、鋪設(shè)防水層、設(shè)置排水邊溝等措施,減小襯砌內(nèi)外側(cè)的熱交換。
[Abstract]:With the further implementation of "Belt and Road" strategy, more and more geotechnical engineering construction must be carried out under extreme conditions such as high altitude, severe cold and so on. Freezing and thawing disaster is a prominent problem in geotechnical engineering in cold region. Rock skeleton, ice crystal and unfrozen water are coupled with each other under the action of temperature, soil water potential, pressure and deformation. Therefore, it is of great theoretical and engineering significance to study the stability of geotechnical engineering structure from the point of view of hydro-thermal coupling. Based on the Kalongla Tunnel of Zamo Highway in Tibet, the finite element method is adopted in this paper. The single stress field, temperature field and seepage field of tunnel surrounding rock in cold region are numerically calculated, and the distribution of stress and displacement, freezing depth, pore pressure and seepage velocity are analyzed. The coupling problem of multi-field in tunnel surrounding rock in cold region is numerically calculated, and the interaction and variation of stress field, temperature field and seepage field are analyzed. The research shows that the stress redistribution caused by tunnel excavation. The tunnel section surrounding rock arch roof subsidence, inverted arch uplift; The surrounding rock around the tunnel appears seasonal freeze-thaw circle, and the maximum freezing depth appears at the vault. The maximum percolation velocity occurs at the foot of the sidewall wall, the osmotic pressure surface near the excavation section is dense, the hydraulic slope is large, and the seepage water pressure on the rock mass is high. Because of the shallow buried depth and the double influence of the air temperature on the inner wall of tunnel and the mountain surface, the freezing and thawing ring is extremely serious in the area of arched roof of surrounding rock. Under the action of hydro-thermal coupling, the freezing depth of surrounding rock decreases and the displacement and stress increase. After 10 years of operation, the tunnel surrounding rock arch roof subsidence increased from 0.89 mm to 1.89 mm, and the maximum tensile stress of lining increased from 0.4 MPA to 1.3 MPA. It can be seen that the freeze-thaw cycle has a great influence on the mechanical properties of surrounding rock and lining. In the course of tunnel design and construction in cold region, the effect of frost heaving force must be considered, and the interaction of temperature field, water field and stress field must be taken into account in order to reduce the freeze-thaw disaster of tunnel in cold region. In order to reduce the heat exchange between the air temperature inside and outside the tunnel and surrounding rock, good insulation measures should be taken at the entrance and inner wall of the tunnel. Combined with grouting water plugging, laying waterproof layer, setting drainage side ditch and so on, the heat exchange between inside and outside side of lining can be reduced.
【學位授予單位】:西安科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U451.2
【參考文獻】
相關(guān)期刊論文 前10條
1 張國新;沙莎;;混凝土壩全過程多場耦合仿真分析[J];水利水電技術(shù);2015年06期
2 劉泉聲;黃詩冰;康永水;潘陽;崔先澤;;低溫凍結(jié)巖體單裂隙凍脹力與數(shù)值計算研究[J];巖土工程學報;2015年09期
3 蔡海兵;程樺;姚直書;王翰;;基于凍土正交各向異性凍脹變形的隧道凍結(jié)期地層位移數(shù)值分析[J];巖石力學與工程學報;2015年08期
4 賈善坡;吳渤;陳衛(wèi)忠;伍國軍;高敏;龔俊;;熱-應(yīng)力-損傷耦合作用下深埋隧洞圍巖穩(wěn)定性分析[J];巖土力學;2014年08期
5 陳必光;宋二祥;程曉輝;;二維裂隙巖體滲流傳熱的離散裂隙網(wǎng)絡(luò)模型數(shù)值計算方法[J];巖石力學與工程學報;2014年01期
6 黃今;陳拴發(fā);盛燕萍;;隧道襯砌混凝土開裂與耦合場研究進展[J];混凝土;2013年12期
7 李鐵根;;寒區(qū)隧道氣溫對隧道溫度場的影響分析[J];交通標準化;2013年24期
8 夏才初;黃繼輝;韓常領(lǐng);唐志成;;寒區(qū)隧道巖體凍脹率的取值方法和凍脹敏感性分級[J];巖石力學與工程學報;2013年09期
9 徐彬;李寧;李仲奎;閆娜;;低溫液化石油氣和液化天然氣儲庫及相關(guān)巖石力學研究進展[J];巖石力學與工程學報;2013年S2期
10 劉學偉;劉泉聲;黃詩冰;董啟朋;;裂隙巖體溫度-滲流耦合數(shù)值流形方法[J];四川大學學報(工程科學版);2013年S2期
相關(guān)博士學位論文 前2條
1 馮強;季節(jié)性寒區(qū)隧道圍巖溫度場與變形特性研究[D];中國礦業(yè)大學;2014年
2 王軍祥;巖石彈塑性損傷MHC耦合模型及數(shù)值算法研究[D];大連海事大學;2014年
相關(guān)碩士學位論文 前4條
1 隗新宇;多年凍土區(qū)青藏公路楚瑪爾河段路基沉降變形研究[D];北京交通大學;2015年
2 劉瑞全;高寒地區(qū)公路隧道防寒泄水洞設(shè)置技術(shù)研究[D];重慶交通大學;2014年
3 高娟;裂隙巖體凍結(jié)溫度場與滲流場耦合作用機理及應(yīng)用研究[D];中國礦業(yè)大學;2014年
4 劉楠;巖石凍融力學實驗及水熱力耦合分析[D];西安科技大學;2010年
,本文編號:1479950
本文鏈接:http://sikaile.net/shekelunwen/ydyl/1479950.html