社交網(wǎng)絡(luò)用戶影響力算法研究與實(shí)現(xiàn)
[Abstract]:In recent years, the rapid development of social networks has a more and more profound impact on people's lives. Social networks have attracted a large number of users because of their convenience, rapidity, timeliness and so on. The in-depth and comprehensive analysis and mining of social network users is of great significance in the fields of public opinion control, information dissemination, advertising and so on, so it has become a hot research content. Nowadays, social networks show many characteristics, such as complex and diverse, large amount of data and so on. Based on these characteristics, it is necessary to analyze social network users accurately and efficiently, which is also the main research content of this paper. In this paper, the characteristics of social network represented by Weibo are analyzed, and on the basis of CASINO algorithm, an improved algorithm, TPURANK algorithm, is proposed, and the analysis results of TPURANK algorithm are more scientific and reasonable, considering the Weibo topic, the number of Weibo points, the number of forwarding points and the number of comments, and the improved algorithm is used to analyze the influence index of users. The experimental data show that the analysis results of Weibo algorithm are more scientific and reasonable. Secondly, based on the analysis of TPURANK algorithm and MapReduce programming model, this paper proposes a parallelization scheme of TPURANK algorithm, which is implemented on Hadoop platform and tested under different conditions. the experimental results show that the algorithm has better cluster performance and faster execution speed than the original CASINO algorithm, which is helpful for us to analyze the massive data of social network. In order to adapt to the increasing number and scale of social network users. Thirdly, on the basis of the previous work, we design and implement a social network analysis system, including requirements analysis, overall design, functional module design and specific implementation. The system has the functions of social network user influence index ranking, compliance index ranking, user related information query and so on. Finally, we analyze and compare the calculation results of social network subsystem deeply, and find that the influence index of social users is related to the number of links, likes, forwarding and comments, which is very consistent with the actual situation and has high reference value, so the system is very suitable for the analysis of social network users. In addition, we also make a comprehensive summary of the work of this paper and look forward to the future work. As one of the important platforms of modern information dissemination, social network has high research value and broad application prospect. In-depth analysis of social network users can not only help us to find more valuable information, but also promote the development of social network, which is also an important goal of our research work.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP301.6;C912.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Bruce Antelman;李雯;;社交網(wǎng)絡(luò)[J];高校圖書(shū)館工作;2008年01期
2 ;基于位置的手機(jī)社交網(wǎng)絡(luò)“貝多”正式發(fā)布[J];中國(guó)新通信;2008年06期
3 曹增輝;;社交網(wǎng)絡(luò)更偏向于用戶工具[J];信息網(wǎng)絡(luò);2009年11期
4 ;美國(guó):印刷企業(yè)青睞社交網(wǎng)絡(luò)營(yíng)銷新方式[J];中國(guó)包裝工業(yè);2010年Z1期
5 李智惠;柳承燁;;韓國(guó)移動(dòng)社交網(wǎng)絡(luò)服務(wù)的類型分析與促進(jìn)方案[J];現(xiàn)代傳播(中國(guó)傳媒大學(xué)學(xué)報(bào));2010年08期
6 賈富;;改變一切的社交網(wǎng)絡(luò)[J];互聯(lián)網(wǎng)天地;2011年04期
7 譚拯;;社交網(wǎng)絡(luò):連接與發(fā)現(xiàn)[J];廣東通信技術(shù);2011年07期
8 陳一舟;;社交網(wǎng)絡(luò)的發(fā)展趨勢(shì)[J];傳媒;2011年12期
9 殷樂(lè);;全球社交網(wǎng)絡(luò)新態(tài)勢(shì)及文化影響[J];新聞與寫(xiě)作;2012年01期
10 許麗;;社交網(wǎng)絡(luò):孤獨(dú)年代的集體狂歡[J];上海信息化;2012年09期
相關(guān)會(huì)議論文 前10條
1 趙云龍;李艷兵;;社交網(wǎng)絡(luò)用戶的人格預(yù)測(cè)與關(guān)系強(qiáng)度研究[A];第七屆(2012)中國(guó)管理學(xué)年會(huì)商務(wù)智能分會(huì)場(chǎng)論文集(選編)[C];2012年
2 宮廣宇;李開(kāi)軍;;對(duì)社交網(wǎng)絡(luò)中信息傳播的分析和思考——以人人網(wǎng)為例[A];首屆華中地區(qū)新聞與傳播學(xué)科研究生學(xué)術(shù)論壇獲獎(jiǎng)?wù)撐腫C];2010年
3 楊子鵬;喬麗娟;王夢(mèng)思;楊雪迎;孟子冰;張禹;;社交網(wǎng)絡(luò)與大學(xué)生焦慮緩解[A];心理學(xué)與創(chuàng)新能力提升——第十六屆全國(guó)心理學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
4 畢雪梅;;體育虛擬社區(qū)中的體育社交網(wǎng)絡(luò)解析[A];第九屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編(4)[C];2011年
5 杜p,
本文編號(hào):2508444
本文鏈接:http://sikaile.net/shekelunwen/shgj/2508444.html