基于用戶社會關(guān)系的社交網(wǎng)絡(luò)好友推薦算法研究
[Abstract]:There are a large number of users in social networks. How to effectively recommend friends is an important part of the sustainable development of social networks, and it is also an important topic of social network related research. The current practice and existing research often recommend friends based on the explicit information of the user, but ignore the hidden social relations between the users; in addition, the explicit information is often incomplete and there is a problem of false information. In order to effectively realize friend recommendation, this paper proposes a friend recommendation algorithm based on user social relations, and focuses on the application of association rules algorithm to analyze the implicit correlation degree between users, and construct the network directed graph and relationship transfer matrix between users. Then, the relational transfer matrix and PageRank algorithm are combined to calculate the scores of each user, and the users with higher scores are recommended to the target users. On this basis, this paper introduces user influence, and proposes a PeopleRank algorithm which considers user social relations and user influence synthetically. In order to verify the rationality and effectiveness of the algorithm, the two algorithms proposed in this paper are compared with the traditional social filtering algorithm and PageRank algorithm. For this reason, this paper grabs the user data on Twitter social networking site to carry on the experimental analysis. The experimental results show that the algorithm proposed in this paper has a good recommendation effect, especially the friend recommendation algorithm which takes into account user social relations and user influence has obvious advantages in recommendation accuracy and recommendation recall rate.
【作者單位】: 上海大學(xué)悉尼工商學(xué)院;安徽大學(xué)商學(xué)院;
【基金】:國家自然科學(xué)基金面上資助項目(71371010,71571115) 上海市科學(xué)委員會科技人才計劃項目(14PJ1403700) 上海市教育委員會科研創(chuàng)新項目(14YS006) 教育部在線教育研究中心在線教育研究基金(全通教育)項目資助(2016YB138)
【分類號】:C912.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 趙智;時兵;;改進(jìn)的個性化推薦算法[J];長春大學(xué)學(xué)報;2005年06期
2 朱楠;;個性化推薦算法在網(wǎng)絡(luò)教學(xué)中的應(yīng)用[J];科技通報;2013年04期
3 鄭麗琴;;基于關(guān)聯(lián)規(guī)則的推薦算法在游戲搜索引擎中的應(yīng)用[J];湖州師范學(xué)院學(xué)報;2013年06期
4 婁建瑋;劉紅軍;鄭偉;;C#/SQL實現(xiàn)基于項目評分預(yù)測的推薦算法[J];職大學(xué)報;2007年04期
5 楊永健;;基于模糊認(rèn)知圖和人工神經(jīng)網(wǎng)絡(luò)的個性化推薦算法研究[J];天津職業(yè)院校聯(lián)合學(xué)報;2009年05期
6 董全德;徐旭;;一種新的協(xié)同過濾推薦算法[J];鄂州大學(xué)學(xué)報;2014年04期
7 李娟;;基于命名實體的網(wǎng)頁推薦算法研究[J];咸陽師范學(xué)院學(xué)報;2013年06期
8 ;[J];;年期
相關(guān)會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機(jī)應(yīng)用技術(shù)交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務(wù)個性化推薦系統(tǒng)[A];社會經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會第17屆學(xué)術(shù)年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時推薦算法[A];第五屆全國復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2494900
本文鏈接:http://sikaile.net/shekelunwen/shgj/2494900.html