非線性結(jié)構(gòu)方程模型在老撾高等教育中的實(shí)證研究
[Abstract]:In the fields of behavior, sociology, psychometrics and economic management, there are often variables that are difficult to measure directly and accurately, such as intelligence, learning motivation, and so on. The relationship between these potential variables and explicit variables needs to be evaluated. Traditional statistical analysis methods are difficult to solve these problems. Structural equation model (Structural Equation Modeling,) is an important tool for multivariate statistical analysis. Compared with traditional regression analysis, structural equation model can not only measure the relationship between explicit variables and potential factors. At the same time, it can further describe the complex nonlinear structure between potential variables. In classical regression analysis, the independent variables are usually assumed to be non-random, but the structural equation model does not. If the influence factors can be observed directly, the structural equation model is reduced to regression analysis. The structural equation model also allows for the existence of measurement errors between independent variables and dependent variables, and can simultaneously estimate factor structures and factor relationships, allowing for more elastic measurement models. In this paper, the Bayesian statistical inference problem of nonlinear structural equation model is studied. The research contents are as follows: (1) Bayesian analysis of nonlinear structural equation model; (2) Bayesian analysis of finite mixed structural equation model; (3) Bayesian analysis of spatial structural equation model. As far as the research content is concerned, due to the complexity of the model and the influence of the potential variables, the likelihood function of the model involves multiple integrals which are difficult to deal with. In this paper, a complete Bayesian posteriori sampling procedure is established and the MCMC technique combining Gibbs sampling and MH algorithm is used to realize parameter estimation. Because of the heterogeneity of explicit variables, the traditional assumption of a single population is often not true. In order to solve this problem, the finite mixed structural equation model and the corresponding posteriori inference program are established in this paper. It is well known that in the finite hybrid modeling, the "Label switching" problem often leads to partial or even invalid statistical inference conclusions. For this reason, through the strategy of adding data, the complete data likelihood of index variable is established, and the parameter estimation of mixed ratio is obtained by using prior settings such as Dilikere priori. In this paper, the above research results are extended to the analysis of structural equation models with spatial random effects. Spatial conditional autoregressive models are used to characterize regional heterogeneity and correlation, and the estimation of spatial random effects is obtained. Finally, this paper applies the example of student achievement of a university in Laos to illustrate the effectiveness of the above method, and its related research results have a certain reference role for the policy formulation and financial investment of the Lao government in higher education. The work of this paper is to popularize and develop modern Bayesian analysis, which enriches the connotation and application scope of Bayesian method, and involves some key technologies such as Bayesian finite hybrid modeling. Spatial conditional autoregressive modeling is a targeted research strategy, which meets the needs of complex data analysis in practical problems.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:C81;G649.334
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐穎;張慧琴;;基于SEM結(jié)構(gòu)方程的區(qū)域科技競(jìng)爭(zhēng)力評(píng)價(jià)模型構(gòu)建[J];科學(xué)管理研究;2013年01期
2 謝英;;老撾語(yǔ)專業(yè)教學(xué)改革實(shí)踐探析[J];經(jīng)濟(jì)與社會(huì)發(fā)展;2011年06期
3 衛(wèi)彥雄;;我國(guó)老撾語(yǔ)本科教學(xué)中存在的問(wèn)題及其對(duì)策——以廣西民族大學(xué)教學(xué)實(shí)踐為例[J];經(jīng)濟(jì)與社會(huì)發(fā)展;2011年05期
4 吳林海;侯博;高申榮;;基于結(jié)構(gòu)方程模型的分散農(nóng)戶農(nóng)藥殘留認(rèn)知與主要影響因素分析[J];中國(guó)農(nóng)村經(jīng)濟(jì);2011年03期
5 孔榮;王亞軍;;農(nóng)戶集中居住意愿的影響因素分析[J];新疆農(nóng)墾經(jīng)濟(jì);2010年08期
6 武文杰;劉志林;張文忠;;基于結(jié)構(gòu)方程模型的北京居住用地價(jià)格影響因素評(píng)價(jià)[J];地理學(xué)報(bào);2010年06期
7 梁一鳴;張鈺爛;董西釧;;基于結(jié)構(gòu)方程模型的杭州城鎮(zhèn)居民食品安全滿意度統(tǒng)計(jì)評(píng)估[J];統(tǒng)計(jì)教育;2010年05期
8 林彥蕓;;基于結(jié)構(gòu)方程模型的廣東省中學(xué)教師參與體育活動(dòng)影響因素分析[J];廣州體育學(xué)院學(xué)報(bào);2010年02期
9 趙夫明;王學(xué)臣;胡云江;;結(jié)構(gòu)方程模式在心理學(xué)研究中的適用性評(píng)價(jià)[J];重慶科技學(xué)院學(xué)報(bào)(社會(huì)科學(xué)版);2010年02期
10 劉彪;舒劍萍;;基于結(jié)構(gòu)方程模型的高校教職工心理癥狀及其影響因素的相關(guān)分析[J];數(shù)理醫(yī)藥學(xué)雜志;2009年06期
相關(guān)博士學(xué)位論文 前1條
1 鄭術(shù)蓉;線性不等式約束下的EM算法[D];吉林大學(xué);2004年
相關(guān)碩士學(xué)位論文 前3條
1 王英;基于方差和中值調(diào)整的RNA-Seq數(shù)據(jù)標(biāo)準(zhǔn)化方法及其評(píng)估[D];廈門(mén)大學(xué);2014年
2 寇鵬;基于非線性結(jié)構(gòu)方程模型的公司成長(zhǎng)性分析[D];昆明理工大學(xué);2013年
3 周旭武;結(jié)構(gòu)方程模型方法的實(shí)現(xiàn)與應(yīng)用[D];大連理工大學(xué);2009年
,本文編號(hào):2225175
本文鏈接:http://sikaile.net/shekelunwen/shgj/2225175.html