大數(shù)據(jù)背景下政府統(tǒng)計數(shù)據(jù)分析及預(yù)測研究
[Abstract]:In recent years, large-scale growth of data has occurred in many fields, such as network economics, environmental science, Internet technology and so on. The society has formally entered the era of big data. The analysis algorithm can not meet the demand of the rapid growth of data. This paper mainly analyzes and studies the government statistical methods under the background of large data. The specific work arrangement is as follows. The first chapter discusses the research background, significance and literature review at home and abroad, and puts forward the research problems of this paper. The second chapter introduces the Bootstrap algorithm and Bootstrap. The improved algorithm Bag of Little Bootstrap (BLB algorithm for short) is presented. The specific idea and calculation process of the algorithm are given. It is pointed out that the BLB algorithm has high feasibility in the case of large amount of data. The method of sampling based on Bootstrap is put forward, which enlarges the sample size of data, reduces the collection frequency of price collection points, saves the cost of data acquisition, and improves the prediction precision. Referring to the method of statistical network price consumption index, the weight of CPI calculation is increased. In the fourth chapter, a regression prediction model based on Bootstrap and BLB sampling method is constructed, and the corresponding algorithm is given. The model presented in this paper reflects the advantages of Bootstrap and BLB sampling methods in statistical data processing and inference. In the fifth chapter, the regression prediction model mentioned in the fourth chapter is empirically analyzed, and the experimental results show that the Bootstrap regression algorithm has higher prediction than the traditional multiple linear regression model. The BLB regression model is applied to the prediction of CPI, which further verifies that the BLB regression model has higher accuracy than the Bootstrap regression model.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:C812
【參考文獻】
相關(guān)期刊論文 前10條
1 田濤;;電商發(fā)展對CPI的影響研究——基于大數(shù)據(jù)背景下線上線下價格波動的同步性分析[J];上海經(jīng)濟研究;2016年03期
2 于施洋;王建冬;童楠楠;;大數(shù)據(jù)環(huán)境下的政府信息服務(wù)創(chuàng)新:研究現(xiàn)狀與發(fā)展對策[J];電子政務(wù);2016年01期
3 張洋;;大數(shù)據(jù)背景下CPI短期預(yù)測[J];中國統(tǒng)計;2015年12期
4 王薇;胡曉丹;;“大數(shù)據(jù)”在CPI調(diào)查中的應(yīng)用初探——人工采集網(wǎng)絡(luò)購買商品價格的研究及建議[J];中國統(tǒng)計;2015年12期
5 孫丹丹;;CPI權(quán)重計算新方法探究[J];中國市場;2015年43期
6 張艷;;芻議大數(shù)據(jù)背景下CPI統(tǒng)計改革取向[J];中國統(tǒng)計;2015年06期
7 陳夢根;劉浩;;大數(shù)據(jù)對CPI統(tǒng)計的影響及方法改進研究[J];統(tǒng)計與信息論壇;2015年06期
8 李曉欣;;大數(shù)據(jù)時代我國CPI調(diào)查與編制問題研究[J];價格理論與實踐;2014年10期
9 張偉;朱孔來;;權(quán)數(shù)對CPI的結(jié)果影響程度定量分析[J];統(tǒng)計與信息論壇;2014年06期
10 張明康;;大數(shù)據(jù)應(yīng)用于政府統(tǒng)計的探索與實踐——基于財稅數(shù)據(jù)應(yīng)用的研究[J];調(diào)研世界;2014年03期
相關(guān)重要報紙文章 前1條
1 李世超;;利用大數(shù)據(jù)改革CPI調(diào)查方法初探[N];中國信息報;2013年
相關(guān)碩士學(xué)位論文 前3條
1 孔威;時間序列分析在CPI中的應(yīng)用研究[D];延邊大學(xué);2014年
2 徐朝;基于Bootstrap的ARCH類模型的參數(shù)估計及其算法[D];武漢理工大學(xué);2009年
3 曾,
本文編號:2209529
本文鏈接:http://sikaile.net/shekelunwen/shgj/2209529.html