固相法制備金屬氧化物催化材料及其消除CO、NO性能研究
[Abstract]:In recent years, with the rapid development of the economy and society, the exhaustion of resources and the pollution of the environment have seriously restricted the further development of the economy, and even threatened the survival and development of the human, and the new preparation method of the catalyst has become one of the powerful tools to solve the problem. The usual preparation of the catalyst is carried out in the aqueous phase, which inevitably leads to problems of water environmental pollution and the like. Correspondingly, when the preparation of the catalyst is carried out under the anhydrous condition, the water pollution can be effectively avoided. In this paper, we selected two representative catalyst configurations (supported catalyst and composite oxide catalyst) as the research object, and the advantages of the solid-phase method in the preparation of high-performance catalysts were investigated in detail. At the same time, the influence of the preparation parameters on the catalyst was investigated in combination with a variety of physical and chemical characterization methods, and the intermediate process of the catalyst preparation was analyzed, and the relationship between the structure and the performance of the catalyst was investigated. The main contents of the study are as follows:1. The metal oxide (NiO, Co3O4, CeO2) nano-particle catalyst loaded in the SBA-15 channel with high content and single dispersion is prepared by the solid-phase method with the simple nitrate as the metal oxide precursor and the SBA-15 as the carrier. The N2 adsorption and transmission electron microscope show that the nano-particles are filled in the mesoporous channel. The monodispersity of the nanoparticles was confirmed by X-ray diffraction and transmission electron microscopy. The effect of different nickel oxide content, different firing temperature, different precursor and pore channel on the preparation results was further investigated with nickel as the research object, and the effect of the pore-limited region on the decomposition and aggregation of the object species was also studied. The results show that the size of NiO particles has not changed significantly with the increase of content and temperature; the type of the precursor and the existence of the mesopore have great influence on the preparation result, and the nickel acetate is used as the nickel source, so that the nickel salt can not enter the mesoporous channel, and the large-particle NiO outside the pore canal can only be obtained; The limited domain effect of the pore canal makes the decomposition of the metal salt and the rapid growth of the nano-particles to be obviously inhibited. In combination with the results of the preparation of the intermediate process, we speculate that the fluidity of the molten salt formed during the heating process of the nickel nitrate precursor is the premise of ensuring that the nickel species enters the SBA-15 pore canal, and the viscosity property of the molten salt ensures the monodispersity of the particles. In the end, we investigated the activity of the nickel catalyst in the hydrodechlorination of the chlorobenzene and the hydrogen production from the decomposition of NH3, and found that the catalyst obtained by the solid-phase method has better activity relative to the conventional method (impregnation method). the results show that the solid-phase method is a potential application for pollutant treatment and clean energy production.2, the copper nitrate is a copper salt precursor, the SBA-15 is a carrier, a high content (20 wt%) copper species is bonded to the SBA-15 surface for the first time by using a solid phase method, And the crystal phase cuo of the large particles is mainly obtained by using the conventional impregnation method. The samples were further characterized by X-ray diffraction, H2 program temperature-raising and reduction, in-situ IR, etc., and the copper species were bonded to SBA-15 in the form of isolated copper dimer in the form of co-condensation and dehydration with the hydroxyl group of SBA-15. The results show that the specific surface area of the carrier is not the key to the successful bonding of the copper species, and the capillary adsorption of the unique pore structure of the SBA-15 is very important to the dispersion of the copper species. Supported copper-based catalysts were prepared by solid-phase method, and the performance of CO-PROX in the selective oxidation of hydrogen-rich CO was also investigated. We have found that the size of the CeO2 particles and the interaction of the copper particles significantly affect the activity of the reaction. Due to the fact that the solid phase method can reduce the size of the Ce02, it is also possible to enhance the interaction between the copper particles as compared to the conventional impregnation method, thus exhibiting excellent CO-PROX activity. In addition, by compare that two different support of the amorphous silica gel and the SBA-15, it is found that the amorphous silica gel has a higher activity, which may be caused by a certain limit to the diffusion of the reactant molecules in the pore canal. The performance of its in NO + CO reaction was also investigated. Compared with the conventional impregnation method and the coprecipitation method, the solid-phase method has the advantages of: (1) the solid-phase method can avoid the loss of the active species; and (2) the solid-phase method is favorable for obtaining the high-specific surface area catalyst, This may be associated with a gas such as NOx released from the decomposition of the metal salt during the preparation process, which results in a fine pore structure for the catalyst; and (3) the solid phase preparation process is beneficial to the enhancement of the effect of nickel and sulfur. These reinforcing nickel alloys are mainly represented by NiO which is highly dispersed on the surface of Ce02 and Ni2 + incorporated in the Ce02 lattice. Due to the nature of these structures and species, the preparation of the catalyst in the solid phase process exhibits excellent activity in the NO + CO reaction. It was found that the NO + CO activity of the catalyst was the best when the molar ratio of nickel to nickel was 1:9. Too much or too little nickel is detrimental to the catalytic activity.
【學位授予單位】:南京大學
【學位級別】:博士
【學位授予年份】:2011
【分類號】:X505;O643.36
【相似文獻】
相關期刊論文 前10條
1 龔惠娟,陳澤智;車用尾氣催化劑催化特性的模擬[J];計算機與應用化學;2000年05期
2 陳澤智,陶建幸,龔惠娟;車用尾氣催化劑工作性能的模擬與分析方法[J];計算機與應用化學;2001年Z1期
3 王嵩;毛東森;吳貴升;郭曉明;盧冠忠;;銅/氧化鋯催化劑的制備及應用研究進展[J];化工進展;2008年06期
4 趙海;張德祥;高晉生;;稀土摻雜鐵錳脫硝催化劑的制備及其性能研究[J];煤炭轉化;2011年04期
5 ;輕油制氫燒結型催化劑降低煅燒溫度和催化劑中鎳含量初步研究[J];勝利石油化工;1976年03期
6 秦永寧;烴類水蒸汽轉化制氫催化劑初步設計[J];天津大學學報;1978年02期
7 南化公司研究院二室釩催化劑組;美國進口硫酸釩催化劑剖析報告[J];硫酸工業(yè);1979年02期
8 劉金香;高秀英;;熱重法用于天然氣蒸汽轉化催化劑的篩選和還原條件的考察[J];石油化工;1980年07期
9 楊孔章;劉傳樸;;氫氣脈沖色譜法測定催化劑中鎳表面積[J];石油化工;1980年10期
10 李樹本;;多組份鉬酸鹽催化劑丙烯氨氧化性能的研究[J];石油化工;1981年07期
相關會議論文 前10條
1 李文鵬;徐顯明;郁向民;李方偉;裴皓天;李影輝;;天然氣二段蒸汽轉化催化劑的分析表征[A];第四屆全國工業(yè)催化技術及應用年會論文集[C];2007年
2 汪國軍;吳糧華;陳欣;謝在庫;;丙烯腈新型催化劑研制[A];第十三屆全國催化學術會議論文集[C];2006年
3 鄭俊嫻;王遠洋;;相催化劑微粒聚集分維特征的模擬研究[A];第七屆全國催化劑制備科學與技術研討會論文集[C];2009年
4 周曉奇;李速延;;變換催化劑的現(xiàn)狀及其發(fā)展趨勢[A];第2屆全國工業(yè)催化技術及應用年會論文集[C];2005年
5 張鴻喜;吳君璧;宋美婷;李海濤;亢麗娜;趙永祥;;水熱條件下Ni/La_2O_3-SiO_2-Al_2O_3催化劑結構演變[A];第十屆全國工業(yè)催化技術及應用年會論文集[C];2013年
6 歐陽平;姚金華;陳國需;李華峰;;摩擦催化反應中機械摩擦作用對催化劑的影響[A];第四屆全國工業(yè)催化技術及應用年會論文集[C];2007年
7 劉智;黃海兵;張新莉;甄洪鵬;義建軍;黃啟谷;楊萬泰;張明革;高克京;李紅明;;高活性TiCl_4/SiO_2/AlEt_3催化劑淤漿聚合制備寬峰分布聚乙烯[A];2011年全國高分子學術論文報告會論文摘要集[C];2011年
8 楊述芳;陶若虹;徐樹元;任宏俊;;催化劑的壁厚設計與壽命管理[A];2012中國環(huán)境科學學會學術年會論文集(第三卷)[C];2012年
9 韓哲;張冬菊;李國平;武劍;劉成卜;;Ziegler-Natta催化劑下α-烯烴聚合反應中若干問題的理論研究[A];中國化學會第九屆全國量子化學學術會議暨慶祝徐光憲教授從教六十年論文摘要集[C];2005年
10 洪景萍;;山梨醇和釕助劑添加對二氧化硅擔載鈷基催化劑結構及其費托合成性能影響的原位表征研究[A];中國化學會第28屆學術年會第1分會場摘要集[C];2012年
相關重要報紙文章 前3條
1 覃澤文;催化劑助氫氣輕松儲存[N];中國能源報;2009年
2 仇國賢;原位晶化催化劑降物耗能耗[N];中國化工報;2009年
3 特約記者 張曉君 蕭兵;科技創(chuàng)新降低能耗提高效率[N];中國石油報;2011年
相關博士學位論文 前10條
1 周功兵;液相苯部分加氫制環(huán)己烯新型釕催化劑的研究[D];復旦大學;2014年
2 劉洋;基于POC和SCR技術降低車用柴油機顆粒物和氮氧化物排放的研究[D];山東大學;2015年
3 伍士國;基于CTAB輔助制備的FeMnTiO_x催化劑NH_3-SCR脫硝的性能研究[D];南京大學;2015年
4 曹朋;丁腈橡膠溶液加氫催化劑的制備及活性研究[D];北京化工大學;2015年
5 王芬芬;纖維素催化轉化制備乳酸[D];陜西師范大學;2015年
6 王秋麟;鈦基催化劑催化降解氯苯和二VA英的基礎研究[D];浙江大學;2015年
7 郭躍萍;電沉積制備非晶態(tài)Co基薄膜催化劑硼氫化鈉制氫研究[D];蘭州大學;2013年
8 湯常金;固相法制備金屬氧化物催化材料及其消除CO、NO性能研究[D];南京大學;2011年
9 黃一波;含氟硫脲有機催化劑的制備及應用[D];南京理工大學;2012年
10 鄭曉玲;活性炭為載體釕催化劑的制備及氨合成催化性能的研究[D];福州大學;2002年
相關碩士學位論文 前10條
1 段志敏;甲烷二氧化碳重整反應鎳基和鈷基催化劑的制備及性能研究[D];內(nèi)蒙古大學;2015年
2 馬茹瑰;CO_2加氫合成甲醇Cu-ZnO-ZrO_2催化劑的制備與性能研究[D];昆明理工大學;2015年
3 何貞泉;Cu/γ-Al_2O_3催化劑對HCN的催化水解性能研究[D];昆明理工大學;2015年
4 陳新怡;超臨界甲醇中纖維素半纖維素催化轉移加氫液化研究[D];昆明理工大學;2015年
5 陳雅;M41S及SBA-15介孔分子篩固載硅鎢酸催化劑的制備表征及催化性能研究[D];鄭州大學;2015年
6 李博;過渡金屬復合物催化劑催化二氧化碳加氫反應的研究[D];蘭州大學;2015年
7 邢婉貞;硅烷偶聯(lián)劑改性硅膠催化雙氧水的Baeyer-Villiger反應研究[D];南京理工大學;2015年
8 郭瑜;負載型鐵基納米金催化劑的制備及其構效關系研究[D];山東大學;2015年
9 張信莉;Mn改性γ-Fe_2O_3催化劑低溫SCR脫硝性能研究[D];山東大學;2015年
10 孫帥帥;CuO/CeO_2的浸漬法制備及其催化CO氧化性能[D];上海應用技術學院;2015年
,本文編號:2482095
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/2482095.html