共混法制備納米碳纖維和多孔碳纖維及其吸波性能的研究
[Abstract]:The stealth technology of weapon and equipment has become an important means of improving the defense and fighting ability in the modern war, and the wave-absorbing stealth material is one of the key technologies of the stealth technology. The current carbon material is the most promising, comprehensive and best wave-absorbing material in the developed wave-absorbing material, not only can absorb the wave, but also can be enhanced, and can be used as a structural wave-absorbing material. Therefore, different types of carbon materials have been developed, and it is of great theoretical and practical value to study the wave-absorbing property of the composite material prepared by the filling of the wave-absorbing agent into the resin. Polyacrylonitrile (PAN) is used as a carbon precursor polymer, and polymethyl methacrylate (PMMA) is used as the thermal decomposition polymer, and PAN/ PMMA is prepared by co-dissolving the two in the dimethylamino-amine (DMF). PAN/ PMMA blended fiber was prepared by wet method, and the components of PMMA were removed by pre-oxidation and carbonization. hole carbon fiber. study of that composite material to be added to the epoxy resin Wave-absorbing performance. The main work includes the following The dynamic rheological properties of PAN/ PMMA blend solution were analyzed by strain-controlled dynamic rheometer. The molecular weight of PAN/ PMMA blend was found to be different when the molecular weight of PAN was different, that is, the molecular weight was 50,000 (PAN5) and the molecular weight was In this paper, the relationship between the logG ratio of PAN5/ PMMA and log-type is different, that is, the logG ratio of PAN5/ PMMA is significantly different from that of log G in the low-frequency range, while PAN8/ PMMA is a linear relationship, which shows that the PAN5/ PMMA blend solution is in the form of a linear relationship. It is found that the PAN5/ PMMA solution is allowed to stand for 12-24 hours, and the PAN8/ PMMA blend solution is allowed to stand at the same time and the blending solution is cast into a film to form a film, The morphology of the cross-section of the film was observed by SEM. The results showed that both PAN and PMMA exhibited their phase structure and quality in the blending system. the high percentage of the component tends to form a continuous phase. when the pan molecule when the amount is increased, the size of the dispersed phase is obviously reduced, and the success of the wet spinning is as follows: the mass percentage is 3 7 and 7: 3 PAN/ PMMA blend fibers. In the fiber, the two phase distribution is different, that is, when the molecular weight of the PAN is 80,000, the same phase distribution as the blend film is present; and when the PAN molecular weight In the case of 50,000, the PAN tends to form a continuous phase structure. the size of the dispersed phase in the blended fiber can be controlled by the drafting multiple, and the PAN/ PMMA blended fiber raw silk is pre-oxidized and carbonized, the appearance of the obtained carbon fiber is related to the dispersion state of the PAN phase in the raw silk, when the powder is dispersed, the nano carbon fiber is obtained, the diameter is 80-150n, m. the degree of graphitization of the resulting carbon material can be controlled by changing the temperature of the carbonization. the conductivity at 1200 DEG C is from 0 to 1S/ cm, and the conductivity of 1200 DEG C is 2. 3 to 10 to 2 S/ cm. the obtained carbon material is in a ratio of 2-8wt% and a ring by taking the obtained carbon material as a wave-absorbing agent The oxygen resin is mixed, and the standard samples are made to test the complex dielectric constant of them at 8GHz-12GHz. With the increase of the content of the wave-absorbing agent, and the loss tangent is also increased with the increase of the content of the wave-absorbing agent. The electromagnetic wave reflectivity of the composite material with the same thickness is used to guide the design and preparation of the single-layer structure composite material. The performance of the absorption wave of the single-layer structure composite material with the content of 2-8wt% of the wave-absorbing agent is HP8722 of Agilent. The results of the reflectivity test of the ES type vector network analyzer are as follows: under a certain thickness (3mm), the peak of the reflectivity of the composite material at 8-12GHz with respect to the electromagnetic wave the increase of the content of the wave-absorbing agent is small; the wave-absorbing agent contains When the amount is 8wt%, the frequency of the reflectance peak is shifted to the low frequency. The actual test results are consistent with the theoretical simulation results. The porous carbon fiber composite material has a lower reflectivity, and the frequency range of the reflection peak is less than -10dB. For example, the wave-absorbing agent content is 8w. the minimum reflectivity of the composite material with the porous carbon fiber as the wave absorbing agent is -20dB, the minimum reflectivity of the composite material with the porous carbon fiber as the wave absorbing agent is -20dB, and the nano-carbon fiber When the dimension is a wave-absorbing agent, the minimum reflectivity is -16dB, while the frequency range below -10dB is about 2GHz. The mechanism of the wave absorption is discussed in this paper. It is considered that the absorption of the electromagnetic wave by the wave-absorbing agent is mainly caused by the absorption of the electromagnetic wave and the decay of many times. Based on the two mechanisms, the porous carbon fiber is used as the wave absorbing agent, the path of the electromagnetic wave reflection is increased, and the further attenuation of the electromagnetic wave is facilitated.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2010
【分類號(hào)】:TQ340.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;一種基于納米碳纖維的貴金屬電催化劑及其制備方法[J];高科技纖維與應(yīng)用;2009年04期
2 ;金屬纖維-納米碳纖維-碳?xì)饽z復(fù)合材料制備方法及用途[J];高科技纖維與應(yīng)用;2010年06期
3 劉春華;戴超林;游奎一;劉平樂;王良芥;羅和安;;泡沫鎳及負(fù)載型鎳催化劑制備納米碳纖維層的研究[J];化學(xué)研究與應(yīng)用;2008年11期
4 王強(qiáng)華;;納米碳纖維用于低成本工程聚合物[J];玻璃鋼;2009年01期
5 ;東京大學(xué)開發(fā)出酚醛納米碳纖維非織造材料[J];有機(jī)硅氟資訊;2009年Z1期
6 ;負(fù)載型鈦硅分子篩/納米碳纖維復(fù)合催化劑及制備和應(yīng)用[J];高科技纖維與應(yīng)用;2009年04期
7 張旺璽;;電紡絲制備聚丙烯腈基納米碳纖維[J];紡織科學(xué)研究;2010年03期
8 ;東京大學(xué)開發(fā)出酚醛納米碳纖維非織造材料[J];納米科技;2009年05期
9 梅啟林;王福玲;黃志雄;王繼輝;魏濤;;納米碳纖維復(fù)合材料的制備及其力學(xué)性能研究[J];武漢理工大學(xué)學(xué)報(bào);2007年08期
10 張旺璽;;靜電紡絲制備聚丙烯腈納米碳纖維[J];合成纖維工業(yè);2007年05期
相關(guān)會(huì)議論文 前10條
1 李艷強(qiáng);賁騰;裘式綸;;碳化多孔芳香骨架用于吸收二氧化碳[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年
2 張旺璽;;電紡絲制備聚丙烯腈基納米碳纖維[A];雪蓮杯第10屆功能性紡織品及納米技術(shù)應(yīng)用研討會(huì)論文集[C];2010年
3 李啟漢;黎海超;陳水挾;;一種高比表面酚醛基多孔碳材料的制備[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第2分冊(cè))[C];2010年
4 方克明;胡曉軍;陳錫花;;納米碳纖維微觀結(jié)構(gòu)的高分辨電鏡研究[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國(guó)第二屆納米材料和技術(shù)應(yīng)用會(huì)議論文集(上卷)[C];2001年
5 鄭俊生;張新勝;隋志軍;李平;袁渭康;;納米碳纖維電極電化學(xué)性能初步研究[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(下集)[C];2005年
6 王艷香;譚壽洪;江東亮;遲偉光;;有機(jī)物裂解制備反應(yīng)燒結(jié)碳化硅的研究[A];2002年材料科學(xué)與工程新進(jìn)展(下)——2002年中國(guó)材料研討會(huì)論文集[C];2002年
7 馮玉;敖日格勒;周雪松;;電紡法制備木質(zhì)素納米碳纖維[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
8 戴超林;劉平樂;王良芥;羅和安;;金屬泡沫鎳及負(fù)載型鎳催化劑制備納米碳纖維的研究[A];第三屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(上)[C];2006年
9 李光;潘緯;金俊弘;楊勝林;江建明;;含碳前驅(qū)體聚合物與熱解聚合物的共混紡絲法制備納米碳纖維[A];2007年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2007年
10 于泓;隋志軍;李平;周靜紅;周興貴;袁渭康;;不同微觀結(jié)構(gòu)納米碳纖維負(fù)載銠催化劑的性能研究[A];第十一屆全國(guó)青年催化學(xué)術(shù)會(huì)議論文集(上)[C];2007年
相關(guān)重要報(bào)紙文章 前9條
1 劉海英;英利用多孔碳開發(fā)新型空氣電池[N];科技日?qǐng)?bào);2009年
2 實(shí)習(xí)生毛錦偉記者徐敏褚寧;上海高校構(gòu)建國(guó)際化科研大舞臺(tái)[N];解放日?qǐng)?bào);2003年
3 李永丹;創(chuàng)造持續(xù)動(dòng)力開發(fā)全新材料[N];中國(guó)化工報(bào);2002年
4 毛天球;組織工程學(xué)研究概況[N];中國(guó)醫(yī)藥報(bào);2000年
5 星武;創(chuàng)造輝煌 為中國(guó)人爭(zhēng)光[N];上?萍紙(bào);2002年
6 程書權(quán);組織工程學(xué)研究與應(yīng)用現(xiàn)狀[N];中國(guó)醫(yī)藥報(bào);2001年
7 王小龍;加用納米技術(shù)研制新型硫鋰電池[N];科技日?qǐng)?bào);2009年
8 記者 尤志卉;新式電動(dòng)車開鎖靠指紋[N];蘇州日?qǐng)?bào);2010年
9 記者 王小龍;“豆莢”復(fù)合材料可延長(zhǎng)鋰離子電池使用壽命[N];科技日?qǐng)?bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 張勇;納米碳纖維的批量制備技術(shù)與裝置研究[D];湖南大學(xué);2010年
2 曹堯杰;納米碳纖維規(guī)整結(jié)構(gòu)催化劑的制備及其流體力學(xué)性能研究[D];華東理工大學(xué);2011年
3 王安苗;多孔碳材料的制備及在儲(chǔ)氫、儲(chǔ)電和催化中的應(yīng)用[D];華東理工大學(xué);2011年
4 鮑衛(wèi)仁;煤基原料等離子體轉(zhuǎn)化合成的基礎(chǔ)研究[D];太原理工大學(xué);2010年
5 梅啟林;納米碳纖維的表面處理及其聚合物復(fù)合材料的性能研究[D];武漢理工大學(xué);2008年
6 張乾;具有對(duì)稱結(jié)構(gòu)的螺旋碳纖維和多枝狀碳纖維的制備及生長(zhǎng)機(jī)理研究[D];青島科技大學(xué);2009年
7 張鋒;碳基及錫基鋰離子電池負(fù)極材料的制備及性能研究[D];吉林大學(xué);2009年
8 于立巖;一維碳納米材料的可控制備及其生長(zhǎng)機(jī)理的研究[D];青島科技大學(xué);2009年
9 謝廣文;納米碳纖維表面化學(xué)鍍層及模板法納微結(jié)構(gòu)的制備與表征[D];青島科技大學(xué);2007年
10 唐佩福;多孔碳酸化羥基磷灰石骨水泥的實(shí)驗(yàn)研究[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2002年
相關(guān)碩士學(xué)位論文 前10條
1 張亮;共混法制備納米碳纖維和多孔碳纖維及其吸波性能的研究[D];東華大學(xué);2010年
2 魏一忠;細(xì)菌纖維素基納米碳纖維的制備及其儲(chǔ)鋰儲(chǔ)氫性能研究[D];天津大學(xué);2010年
3 孫鋒杰;靜電紡絲法制備聚丙烯腈基納米碳纖維的研究[D];北京化工大學(xué);2010年
4 王文娟;新型多孔碳材料的制備及其電化學(xué)性能研究[D];華東師范大學(xué);2010年
5 陳觀通;基板法銅粒子催化合成納米碳纖維陣列的研究[D];青島科技大學(xué);2010年
6 夏玉明;分級(jí)多孔碳及其復(fù)合物結(jié)構(gòu)調(diào)控與電化學(xué)性能[D];華東理工大學(xué);2012年
7 胡傳奇;多孔碳坯的室溫冷凝澆注成型工藝及反應(yīng)燒結(jié)體性能研究[D];中國(guó)建筑材料科學(xué)研究總院;2011年
8 董紅周;高壓直流電纜用納米碳纖維/EVA復(fù)合半導(dǎo)電材料電性能研究[D];青島科技大學(xué);2010年
9 馮玉;靜電紡絲法制備木質(zhì)素納米碳纖維的研究[D];華南理工大學(xué);2010年
10 王莎莎;塊狀納米碳纖維及其C/C復(fù)合材料的制備研究[D];華東理工大學(xué);2011年
,本文編號(hào):2327512
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/2327512.html