溶劑熱法制備納米鐵氧體的性能研究
發(fā)布時間:2018-06-16 20:39
本文選題:溶劑熱法 + 錳鋅鐵氧體; 參考:《沈陽理工大學》2017年碩士論文
【摘要】:鐵氧體因具有優(yōu)越的理化機能,已被科學工作者普遍應用于通信、電子、醫(yī)學以及生物工程等一系列領域。鐵氧體自身具有生物相容性,且無害無毒無污染等優(yōu)點,有望被用于生物醫(yī)療和腫瘤靶向治療中,在生物和醫(yī)學領域方面有著光明的未來。鐵氧體的性能與納米顆粒的形貌、粒徑和分散性等息息相關相關,因而制備形貌可控、尺寸均一、性能穩(wěn)定的納米鐵氧體具有特殊的意義。本文采用溶劑熱合成了單分散的納米錳鋅鐵氧體、鎳鋅鐵氧體和鈷鋅鐵氧體,并研究了不同反應條件對納米鐵氧體分散性、粒徑、形貌和性能的影響,具體研究內容如下:(1)利用乙二醇為溶劑,聚乙二醇作為分散劑,氯化鋅以及氯化鐵等試劑作為反應體系中的前驅體,通過溶劑熱法成功制備了鐵氧體。分析了表面活性劑含量、分散劑的加入量以及溶液溫度變化等一系列因素對產物的形貌、團聚性和分散度的影響。并通過掃描電子顯微鏡、振動樣品磁強計、傅立葉變換紅外光譜射儀、X衍射儀以及交變磁場發(fā)生器等對產物物相、形貌、磁熱和磁性能分析和研究。通過研究獲得最佳工藝條件為:加入0.8mmol的聚乙二醇、5mmol氯化鐵、反應溫度為180℃、20mmol的乙酸銨。在最佳工藝條件下,得到的納米鋅鐵氧體是單分散的,結晶性和性能良好。并且在5-25℃條件下表現(xiàn)出亞鐵磁性。(2)在最優(yōu)工藝條件下,合成了MnxZn1-xFe2O4鐵氧體(x=0.2,0.4,0.6,0.8)并通過掃描電子顯微鏡、振動樣品磁強計、X衍射儀、傅立葉變換紅外光譜射儀和磁熱性能等手段對樣品進行了表征。XRD分析結果表明,制備的錳鋅鐵氧體是立方尖晶石結構、產物純度高、結晶性能好、隨著x值的不斷增加,鎳鋅鐵氧體晶格常數(shù)逐漸減小。磁性能分析結果表明,錳鋅鐵氧體在5-25℃條件下呈現(xiàn)出亞鐵磁性,因而可以通過改變錳和鋅的值,來改變產物的磁性能和磁熱性能。(3)制備了單分散的納米NixZn1-xFe2O4鐵氧體(x=0.2,0.4,0.6,0.8),研究了不同摩爾比,對產物的磁性能和磁熱性能的影響。通過研究發(fā)現(xiàn),產物在5-25℃條件下均表現(xiàn)出亞鐵磁性。隨著x值不斷上升,樣品的飽和磁化強度出現(xiàn)變化先上升后不斷下降特點。在x=0.2時,達到最大值且具有較大的磁滯回線面積。樣品磁熱性能和磁性能出現(xiàn)相似的變化趨勢,Ni0.6Zn0.4Fe2O4納米鐵氧體顯現(xiàn)出優(yōu)異的磁性能和磁熱性能等優(yōu)點,在50kHz交變磁場中響應600s,最終溫度達到63.6℃。(4)制備了納米鈷鋅鐵氧體CoxZn1-xFe2O4(x=0.1,0.3,0.5,0.7),SEM結果表明,產物的分散性較好,尺寸均一。從物相分析結果顯示獲得產物具有高純度的立方尖晶石結構。且制備鐵氧體晶格常數(shù),隨x值上升而逐漸減小。x=0.1、0.3、0.5和0.7時,對應的晶格常數(shù)分別為0.8434nm、0.8426nm、0.8418nm、0.8410nm。產物在5-25℃條件下都顯現(xiàn)良好的亞鐵磁性,當鈷含量的上升時,鈷鋅鐵氧體磁性能逐漸上升。在外加磁場條件下,產物磁熱效應十分顯著,Co0.3Zn0.7Fe2O4在50kHz交變磁場中持續(xù)響應600s,最終溫度能達到101.8℃。
[Abstract]:Ferrites have been widely used in a series of fields, such as communication, electronics, medicine and Bioengineering, because of their superior physical and chemical functions. Ferrites have the advantages of biocompatibility, harmless and non-toxic and non polluting. They are expected to be used in biological medical and tumor targeting treatment, and have a bright future in the field of biology and medicine. In the future, the properties of ferrite are closely related to the morphology, particle size and dispersion of nanoparticles. Therefore, the preparation of nano ferrite with controllable morphology, uniform size and stable performance is of special significance. In this paper, the monodisperse nano manganese zinc ferrite, nickel zinc ferrite and cobalt zinc ferrite are synthesized by solvent heat. The effects of reaction conditions on the dispersion, particle size, morphology and properties of nano ferrite were studied. The contents of the study are as follows: (1) using glycol as the solvent, polyethylene glycol as a dispersant, zinc chloride and ferric chloride as precursors in the reaction system, the ferrite was successfully prepared by solvent thermal method. The content of the surfactant was analyzed. The effects of a series of factors such as the amount of dispersant and the temperature change of the solution on the morphology, aggregation and dispersion of the products, and the analysis and study of the phase, morphology, magnetic heat and magnetic properties of the products by scanning electron microscope, vibrating sample magnetometer, Fu Liye transform infrared spectrometer, X diffractometer and alternating magnetic field generator. The optimum technological conditions are as follows: 0.8mmol's polyethylene glycol, 5mmol ferric chloride, the reaction temperature of 180 C, 20mmol ammonium acetate. Under the optimum conditions, the nano zinc ferrite is monodisperse, crystallinity and properties are good. And the ferromagnetism is shown at 5-25 C. (2) under the optimal process conditions, the synthesis is made. MnxZn1-xFe2O4 ferrite (x=0.2,0.4,0.6,0.8) was characterized by scanning electron microscope, vibrating sample magnetometer, X diffractometer, Fu Liye transform infrared spectroscopy and magnetic properties. The results of.XRD analysis showed that the prepared manganese zinc ferrite was a cubic spinel structure with high purity and good crystallization performance with X. The lattice constant of Ni Zn ferrite decreases gradually. The magnetic energy analysis results show that the manganese zinc ferrite exhibits ferromagnetism at 5-25 C, so the magnetic and magneto-thermal properties of the products can be changed by changing the value of manganese and zinc. (3) the monodisperse nano NixZn1-xFe2O4 ferrite (x=0.2,0.4,0.6,0.8) is prepared. The effects of different molar ratios on the magnetic properties and magnetic properties of the products have been studied. It is found that the products exhibit ferromagnetic properties at 5-25 C. As the x value increases, the saturation magnetization of the samples rises first and then decreases. At the time of x=0.2, the maximum value is reached and the hysteresis area is larger. The magneto-thermal properties and magnetic properties of the samples have a similar trend. The Ni0.6Zn0.4Fe2O4 nano ferrite exhibits excellent magnetic and magneto-thermal properties. The response to 600s in the 50kHz alternating magnetic field is 63.6. (4) the nano cobalt zinc ferrite CoxZn1-xFe2O4 (x=0.1,0.3,0.5,0.7) is prepared, and the SEM results show the dispersion of the products. The result of phase analysis shows that the obtained product has high purity cubic spinel structure. And the lattice constant of ferrite is prepared. With the increase of x value, the corresponding lattice constants are 0.8434nm, 0.8426nm, 0.8418nm, and 0.8410nm. products are all good under the condition of 5-25. Ferromagnetism, when the cobalt content rises, the magnetic properties of cobalt zinc ferrite gradually rise. Under the applied magnetic field, the magneto thermal effect of the product is very significant. The Co0.3Zn0.7Fe2O4 in the 50kHz alternating magnetic field continues to respond to 600s, and the final temperature can reach 101.8 degrees C.
【學位授予單位】:沈陽理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TM277;TB383.1
【參考文獻】
相關期刊論文 前10條
1 趙凱;花開慧;稅安澤;;自蔓延燃燒法合成CoFe_2O_4與紅外輻射性能研究[J];人工晶體學報;2015年12期
2 Sireenart Surinwonga;Apinpus Rujiwatrab;;Ultrasonic cavitation assisted solvothermal synthesis of superparamagnetic zinc ferrite nanoparticles[J];Particuology;2013年05期
3 賈成廠;孫愛芝;;燒結釹鐵硼永磁材料[J];金屬世界;2013年03期
4 林輝龍;孫本良;王琳;趙多;薛明;;錳鋅鐵氧體粉體制備技術與添加劑的研究進展[J];遼寧科技大學學報;2012年04期
5 ;新興產業(yè)板塊中新材料的發(fā)展[J];中國組織工程研究與臨床康復;2011年38期
6 王舒峰;鄒圖德;;稀土納米材料制備研究現(xiàn)狀[J];江西化工;2009年04期
7 馬瑞廷;趙海濤;張罡;趙暉;宋凱;;尖晶石型納米晶鈷鋅鐵氧體的制備及其電磁和微波吸收性能[J];納米技術與精密工程;2009年01期
8 張小川;王德平;姚愛華;黃文e,
本文編號:2028034
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/2028034.html