納米球刻印法制備的金屬納米顆粒陣列的結(jié)構(gòu)、等離激元共振模式與SERS性能研究
本文選題:表面增強(qiáng)拉曼散射 切入點(diǎn):金屬納米顆粒陣列 出處:《南京大學(xué)》2017年博士論文
【摘要】:近些年來,利用各種新型納米材料制備工藝與控制技術(shù),人們?cè)O(shè)計(jì)并制造出眾多形貌與功能各異的金屬納米結(jié)構(gòu)。這些金屬納米結(jié)構(gòu)由于支持表面等離激元(surfaceplasmon,SP)共振而表現(xiàn)出極為豐富的光學(xué)性能。伴隨著表面等離基元共振激發(fā),金屬微納結(jié)構(gòu)中的局部電場得到大幅提高,從而提高對(duì)場強(qiáng)敏感的各種光學(xué)非線性過程的轉(zhuǎn)換效率,表面增強(qiáng)拉曼散射(Surface-Enhanced Raman Scattering,SERS)就是最具有代表性的應(yīng)用。作為一種高度靈敏且無損的檢測(cè)技術(shù),SERS被廣泛應(yīng)用于化學(xué)、生物、材料科學(xué)以及醫(yī)學(xué)檢測(cè)等諸多領(lǐng)域,成為當(dāng)前國際國內(nèi)學(xué)術(shù)界的研究熱點(diǎn)之一。本文圍繞新穎金屬納米結(jié)構(gòu)的光學(xué)性質(zhì)研究,用納米球刻印法發(fā)展和制備不同種類的金屬納米顆粒陣列。我們從實(shí)驗(yàn)上對(duì)金屬納米結(jié)構(gòu)的幾何參數(shù)對(duì)結(jié)構(gòu)表面等離激元特性、以及作為SERS芯片性能的影響進(jìn)行了研究,并深入研究了金屬納米結(jié)構(gòu)SP模式與SERS性能之間的關(guān)系。論文具體包括以下幾個(gè)方面:1、系統(tǒng)研究了貴金屬半球殼陣列的透射、反射、吸收光譜特性,以及其作為SERS基底對(duì)R6G分子的拉曼增強(qiáng)效果,并找到了基底的SERS強(qiáng)度與吸收特性之間普遍存在的相關(guān)規(guī)律。在實(shí)驗(yàn)上采用Langmuir-Blodgett方法制備了具有不同周期的單層六角密堆的聚苯乙烯(Polystyrene,PS)微球陣列;通過在這些PS微球陣列上沉積了不同厚度的貴金屬薄層,形成一系列的SERS基底;通過測(cè)量這些貴金屬半球殼陣列的透射、反射光譜與結(jié)構(gòu)的周期、沉積金屬厚度之間的關(guān)系,總結(jié)出線性光學(xué)性質(zhì)的標(biāo)度關(guān)系。實(shí)驗(yàn)進(jìn)一步以金屬半球殼陣列為襯底,測(cè)量其對(duì)R6G分子的拉曼增強(qiáng)效果,發(fā)現(xiàn)SERS增強(qiáng)效果明顯依賴于金屬半球殼陣列的高光學(xué)吸收特性,并且找出了最佳SERS基底。研究表明,在偶極共振的模式下基底的SERS強(qiáng)度與基底在激發(fā)光波長、拉曼散射光波長處的吸收系數(shù)乘積成正比。2、詳細(xì)研究了熱點(diǎn)驅(qū)動(dòng)的準(zhǔn)三維金屬網(wǎng)的線性光學(xué)性質(zhì)及其在表面增強(qiáng)拉曼上的應(yīng)用,發(fā)現(xiàn)結(jié)構(gòu)中大量分布的~10nm超小間隙可以大大提高基底的SERS性能。該準(zhǔn)三維金屬網(wǎng)是在納米球刻印技術(shù)的基礎(chǔ)上,結(jié)合氧等離子體刻蝕技術(shù),真空濺射等工藝制備而成的。通過優(yōu)化氧等離子體刻蝕時(shí)間、金屬沉積厚度,在依然保持對(duì)激發(fā)光和斯托克斯光的高吸收的同時(shí),結(jié)構(gòu)中的納米間隙被調(diào)整至~10nm。在514nm激光的激發(fā)下,最佳SERS基底的拉曼增強(qiáng)因子高達(dá)1.5×108,對(duì)R6G溶液探測(cè)濃度的極限低至1nM。進(jìn)一步的分析表明,當(dāng)金屬顆粒間距降至~10nm時(shí),顆粒間強(qiáng)烈的近場耦合使得超小間隙附近的局域電場被極大地增強(qiáng),超強(qiáng)局域電場進(jìn)一步增強(qiáng)了結(jié)構(gòu)表面吸附分子的拉曼散射,從而大大提高了基底的SERS性能,這個(gè)結(jié)論也被數(shù)值模擬計(jì)算所證實(shí)。3、研究了金屬三角MIM(Metal/Insulator/Metal)結(jié)構(gòu)的幾何參數(shù)對(duì)其吸收特性及其SERS性能的影響,并分析了其背后的物理機(jī)制。在實(shí)驗(yàn)上,通過納米球刻印法制備了由金屬三角納米顆粒、二氧化硅薄膜、金屬組成的MIM結(jié)構(gòu)。發(fā)現(xiàn)改變結(jié)構(gòu)中的二氧化硅介質(zhì)層厚度可以調(diào)節(jié)光吸收程度,將結(jié)構(gòu)優(yōu)化為寬帶和偏振不敏感的完美吸收器;通過改變結(jié)構(gòu)的周期,可以使結(jié)構(gòu)所支持的寬帶吸收波段從可見光擴(kuò)展到近紅外。進(jìn)一步的實(shí)驗(yàn)發(fā)現(xiàn)拉曼增強(qiáng)因子依賴于在激發(fā)光波長和拉曼散射光波長處的吸收系數(shù),而結(jié)構(gòu)對(duì)激發(fā)光的高吸收性能有助于實(shí)現(xiàn)SERS信號(hào)的增強(qiáng)。最佳基底拉曼增強(qiáng)因子值達(dá)到4.9×106,這個(gè)數(shù)值是單純石英襯底上的相同金屬三角納米顆粒的22倍。從數(shù)值模擬計(jì)算分析可知,該MIM結(jié)構(gòu)的寬帶完美吸收是由于該結(jié)構(gòu)中多個(gè)等離激元共振模式所形成的,這些共振導(dǎo)致了結(jié)構(gòu)表面局域電磁場的增強(qiáng)。利用氧等離子體刻蝕技術(shù),將MIM結(jié)構(gòu)中金屬三角納米顆粒的間距減小到亞10納米的尺度,金屬顆粒間的局域場耦合使得顆粒間的電場被極大地增強(qiáng),從而進(jìn)一步提高了金屬三角納米顆粒/Si02薄膜/金屬三層結(jié)構(gòu)的SERS性能,使基底拉曼增強(qiáng)因子進(jìn)一步提高到3.1×107。上述這些納米結(jié)構(gòu)的制備過程具有低成本,大面積,技術(shù)工藝要求低等特點(diǎn),它們?cè)赟ERS以及太陽能電池等商用領(lǐng)域有著極大的潛力。
[Abstract]:In recent years, the use of a variety of new nano material preparation technology and control technology, people design and manufacture of metal nano structure morphology and outstanding different functions. These metal nanostructures support due to surface plasmon resonance (surfaceplasmon, SP) and exhibit extremely rich optical properties with surface plasmon based. Element resonance excitation, metal micro nano structure in the local electric field has been greatly improved, so as to improve the conversion of various nonlinear optical processes field sensitive efficiency, surface enhanced Raman scattering (Surface-Enhanced Raman, Scattering, SERS) is the most representative. With the application as a highly sensitive and nondestructive detection technology, SERS is widely used in chemistry, biology, materials science, medical testing and many other fields, has become a hot research topic in the current international and domestic academic circles. Based on novel metal nanostructures The optical properties of the prepared metal nanoparticles of different arrays of nanosphere lithography and development system. We experimentally on the geometrical parameters of the metal nano structure on the structure of the surface plasmon properties, as well as the influence of the performance of SERS chip is studied. To study the relationship between SP model and metal nano structure the performance of SERS and depth. The paper includes the following aspects: 1, the reflection transmission system research, precious metal hemispherical array, absorption spectra, as well as its SERS Raman enhancement effect of R6G molecules, and find the relevant rules commonly exists between and absorption properties of SERS substrates. With strength different period of six angle close packed polystyrene monolayer was fabricated by Langmuir-Blodgett method in experiment (Polystyrene, PS) microspheres by PS microspheres array; in these arrays of different deposition The noble metal layer thickness, the formation of a series of SERS substrate; measured by transmission of these precious metals hemispherical array, periodic reflection spectrum and structure, the relationship between the thickness of the metal deposition, summed up the linear optical properties of scale. Further experiments using metal hemisphere shell array substrate, the measurement of R6G molecule the Raman enhancement effect, high optical absorption properties of SERS significantly enhance the effect depends on the metal hemispherical array, and find out the best SERS substrate. The results show that the substrate in the dipole resonance mode of SERS intensity and the substrate in the excitation wavelength, the absorption coefficient is proportional to the product of the.2 Raman scattering light wavelength, a detailed study of the hot spots drive the quasi three dimensional metal mesh of the linear optical properties and its application in surface enhanced Raman of the structure found a large number of distributed to 10nm ultra small gap can greatly improve the efficiency of Gao Jidi The performance of SERS. The quasi-3D metal mesh is based on lithography nanospheres, combined with oxygen plasma etching technology, vacuum sputtering process was prepared. By optimizing the oxygen plasma etching time, metal deposition thickness, the remains on the excitation light and Stokes light high absorption at the same time, nano gap structure in be adjusted to ~ 10nm. excited by 514nm laser Raman, best SERS substrate enhancement factor of up to 1.5 x 108, the limit of detection of low concentration R6G solution to 1nM. further analysis shows that when the metal particle spacing to ~ 10nm, inter particle strong near-field coupling makes the local electric field near the ultra small the gap is greatly enhanced, strong local electric field to further enhance the Raman scattering of molecular adsorbent surface structure, which greatly improves the performance of the SERS substrate, the conclusion was also calculated by the numerical simulation of .3, the metal triangle MIM (Metal/Insulator/Metal) SERS performance characteristics and effects of structure parameters on the uptake, and analyzed the physical mechanism behind it. In the experiment, the nanoparticles were prepared by metal engraving triangular nanoparticles, silica film, MIM metal structure consisting of changing the thickness of silica. The dielectric layer structure can adjust the light absorption degree, the structure optimization for the perfect broadband and polarization insensitive absorber; by changing the structure of the cycle, can make the broadband support structure absorption band extended from visible to near infrared. Further experiments found that the Raman enhancement factor depends on the excitation wavelength and Raman absorption coefficient the scattering light wavelength, and the structure will help to enhance the realization of SERS signal of high excitation light absorption properties. The best Raman enhancement factor values up to 4.9 x 10 6, this value is 22 times the same triangle metal nanoparticles alone on the quartz substrate. The analysis from the numerical simulation, the MIM structure of the perfect broadband absorption is due to the structure of a plurality of plasmon resonance modes formed by these resonance leads to enhanced surface structure of electromagnetic field. The use of oxygen administration plasma etching technology, metal nanoparticles will decrease the spacing triangle in the MIM structure to 10 sub nanometer scale, local field coupling between metal particles in the electric field between the particles can be greatly enhanced, so as to further improve the performance of SERS nano meter particle metal triangle /Si02 film / metal three layer structure, the Raman enhancement factor to further improve the preparation process of 3.1 * 107. of these nano structure has the advantages of low cost, large area, low technical requirements, they are in SERS and solar battery business There is a great potential.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1;O657.37
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Stephen Z.D. Cheng;CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER-COATING LAYER FOR POLYMER FILM[J];Chinese Journal of Polymer Science;2001年03期
2 Yukihiro Ozaki;Molecular Orientation and Structural Characterization of Ultrathin Films of C_(12)AzoNaph(1,4)C_6N-SDS Studied by FT-IR and NIR-SERS Spectroscopies[J];Chemical Research in Chinese Universities;2002年04期
3 周光明;黎司;虞丹尼;;SERS中的活性基底[J];化工時(shí)刊;2006年10期
4 譚恩忠;殷鵬剛;郭林;;氯離子對(duì)固定銀納米顆粒SERS活性的影響[J];光散射學(xué)報(bào);2010年04期
5 張君夢(mèng);曲勝春;張利勝;唐愛偉;周樹云;王占國;;銀納米陣列直徑對(duì)SERS增強(qiáng)效果的影響[J];光散射學(xué)報(bào);2011年01期
6 莫冰;李和平;陳娟;王攀;;表面增強(qiáng)拉曼光譜(SERS)及其在定量測(cè)量中的研究進(jìn)展[J];光散射學(xué)報(bào);2013年03期
7 ;NONAQUEOUS SERS:IMIDAZOLE IN METHANOL SOLUTION AT A SILVER ELECTRODE[J];Chinese Chemical Letters;1991年01期
8 鄭海菜,茍?jiān)龉?崔明,李秀英,莫育俊;固-液系統(tǒng)中表面增強(qiáng)喇曼散射強(qiáng)度I_(SERS)對(duì)濃度c的依賴關(guān)系及水楊酸分子的吸附等溫特性研究[J];物理學(xué)報(bào);1992年06期
9 ;SERS CHARACTERIZATION OF ADSORBED WATER AT VERY NEGATIVE POTENTIALS[J];Chinese Chemical Letters;1993年07期
10 陸云,薛奇;THE RING OPENING REACTION OF AN EPOXY COMPOUND ON THE TOP OF CHEMISORBED CYSTAMINE STUDIED BY THE SERS TECHNIQUE[J];Chinese Journal of Polymer Science;1994年02期
相關(guān)會(huì)議論文 前10條
1 劉偉;秦維;劉可;袁亞仙;姚建林;顧仁敖;;一種新型可循環(huán)SERS基底的制備[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第04分會(huì)場摘要集[C];2010年
2 莫育俊;雷潔;李秀英;張鵬翔;;吸附于銅表面上分子的SERS及表面粗糙度對(duì)SERS的影響[A];全國第三屆光散射學(xué)術(shù)會(huì)議論文摘要[C];1985年
3 艾小紅;高小平;李秀英;莫育俊;;蘋果酸吸附在銅和銀表面上SERS的比較[A];全國第三屆光散射學(xué)術(shù)會(huì)議論文摘要[C];1985年
4 高敏俠;林秀梅;任斌;;均勻的強(qiáng)SERS活性基底的制備及表征[A];第十四屆全國分子光譜學(xué)術(shù)會(huì)議論文集[C];2006年
5 高美;方炎;;對(duì)樹枝狀銀納米結(jié)構(gòu)作為SERS增強(qiáng)基底的研究[A];第十四屆全國光散射學(xué)術(shù)會(huì)議論文摘要集[C];2007年
6 王春旭;陳雷;紀(jì)南;阮偉東;趙冰;趙純;;銀的無電沉積及其SERS活性的研究[A];第十五屆全國分子光譜學(xué)術(shù)報(bào)告會(huì)論文集[C];2008年
7 張鵬翔;付石友;龐玉璋;;表面增強(qiáng)喇曼散射的最近研究[A];中國物理學(xué)會(huì)光散射專業(yè)委員會(huì)成立十周年暨第六屆學(xué)術(shù)會(huì)議論文集(上)[C];1991年
8 ;SERS on thin film composed of gold nanoparticles[A];第十六屆全國光散射學(xué)術(shù)會(huì)議論文摘要集[C];2011年
9 楊U,
本文編號(hào):1688974
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/1688974.html