化學(xué)法制備ZnO薄膜的微觀結(jié)構(gòu)研究
本文選題:ZnO薄膜 切入點(diǎn):溶膠凝膠法 出處:《東北大學(xué)》2011年碩士論文 論文類型:學(xué)位論文
【摘要】:氧化鋅(ZnO)是一種直接帶隙寬禁帶(3.37eV)Ⅱ-Ⅵ族化合物半導(dǎo)體材料,具有較大的激子束縛能(60meV),理論上可以在室溫下實(shí)現(xiàn)紫外光的受激發(fā)射。因此,對(duì)ZnO的研究已成為繼GaN之后寬禁帶半導(dǎo)體研究的又一熱點(diǎn)。由于ZnO在結(jié)構(gòu)、能帶、電學(xué)和光學(xué)方面的諸多優(yōu)點(diǎn),加之ZnO薄膜的制作方法很多,可以適應(yīng)不同的應(yīng)用需求,ZnO在器件應(yīng)用方面具有廣闊的應(yīng)用范圍,潛力很大,前景極好。它可以被用來制作透明電極、壓敏電阻、太陽能電池窗口、表面聲波器件、氣體傳感器、發(fā)光二極管等。在短波區(qū)域,ZnO可用于制造紫外發(fā)光器件和紫外激光器,對(duì)于提高光記錄密度及光信息的存取速度起著非常重要的作用。高質(zhì)量薄膜和納米結(jié)構(gòu)的制備已經(jīng)成為ZnO實(shí)現(xiàn)應(yīng)用的重要環(huán)節(jié)。液相化學(xué)方法具有價(jià)格低廉、易于實(shí)現(xiàn)大面積生產(chǎn)等優(yōu)點(diǎn),近年來在納米材料合成方面逐漸引起了研究者的重視。然而,薄膜的質(zhì)量提高、特殊納米結(jié)構(gòu)的可控生長和摻雜工藝一直是液相制備研究中亟待解決的問題,生長機(jī)制尚不明確,需要采用多種手段進(jìn)行系統(tǒng)的實(shí)驗(yàn)研究。本文以兩種化學(xué)方法即溶膠凝膠法(Sol-Gel)和化學(xué)浴沉積法(CBD)制備的ZnO薄膜作為研究對(duì)象,利用X射線衍射(XRD)、原子力顯微鏡(AFM)、透射電鏡(TEM)和高分辨電鏡(HREM)對(duì)ZnO薄膜的微觀結(jié)構(gòu)進(jìn)行了研究,重點(diǎn)結(jié)合薄膜制備原理分析了兩種方法制備的ZnO薄膜的生長機(jī)制。溶膠凝膠法在玻璃襯底上制備的摻鋁ZnO薄膜具有六方纖鋅礦結(jié)構(gòu)。XRD測(cè)試結(jié)果顯示,在Al摻雜量較小時(shí),隨著Al摻雜量的升高,峰位向右移動(dòng),在摻雜量為3 at%時(shí)達(dá)到最大值。但隨著Al摻入量進(jìn)一步增加,峰位向左移動(dòng)。當(dāng)摻Al量超過6 at%時(shí),薄膜的摻雜水平逐漸惡化,致使晶格不再發(fā)生變化。AFM的觀察結(jié)果表明一些ZnO薄膜的表面呈現(xiàn)褶皺現(xiàn)象,這是由于凝膠在熱處理過程產(chǎn)生的應(yīng)力變化造成的結(jié)果。不同鋁摻雜量的ZnO薄膜都呈現(xiàn)c軸擇優(yōu)取向,摻雜量在3 at%時(shí)擇優(yōu)取向最強(qiáng),隨摻雜量進(jìn)一步增加,擇優(yōu)取向度明顯下降。TEM結(jié)果揭示ZnO薄膜由球狀或橢球顆粒組成且呈現(xiàn)明顯的層狀生長特點(diǎn)。ZnO薄膜均經(jīng)過5次旋涂(Spin-coating)而成,在層界面的晶粒較為粗大,形成明顯的粗晶層。粗晶層之間的顆粒較小形成細(xì)晶層。相比鋁摻雜量較多(4-9at%)ZnO薄膜,摻雜量較少(1—3 at%)的ZnO薄膜中粗晶層的顆粒度明顯增大,具有沿著層面生長的趨勢(shì)。分析結(jié)果表明,晶粒的成核、長大、粗化機(jī)制比較復(fù)雜。薄膜最終形成c軸擇優(yōu)取向可能是由自組裝機(jī)制,自織構(gòu)機(jī)制和奧斯瓦爾多熟化機(jī)制綜合作用的結(jié)果。實(shí)驗(yàn)結(jié)果表明,隨Al雜質(zhì)含量的增加,ZnO晶粒得到明顯的細(xì)化。分析認(rèn)為,未形成摻雜的A1原子以非晶A1203的形式在ZnO晶界上形成了對(duì)晶界運(yùn)動(dòng)的釘扎,導(dǎo)致晶粒尺寸的減小。對(duì)化學(xué)浴沉積法制備ZnO薄膜的微觀結(jié)構(gòu)分析結(jié)果表明,薄膜是由柱狀晶粒組成的多晶結(jié)構(gòu),每個(gè)柱狀大晶粒均由種子層表面籽晶顆粒上外延生長而成,即籽晶的晶面取向決定了柱晶的生長取向。電鏡分析結(jié)果表明,薄膜以定向粘附模式(Oriented attachment mechanism)生長。薄膜穩(wěn)定性較差,經(jīng)長時(shí)間電子束輻照,連續(xù)薄膜分解為顆粒結(jié)構(gòu)。
[Abstract]:Zinc Oxide (ZnO) is a direct wide band gap (3.37eV) II-VI compound semiconductor, has large exciton binding energy (60meV), the theory can be achieved on the ultraviolet stimulated emission at room temperature. Therefore, the research on ZnO has become another hot spot after GaN wide band gap semiconductor research. Because ZnO can with many advantages, structure, optical and electrical aspects, and many ZnO film making method, can adapt to the needs of different applications, ZnO in device applications has broad application range, great potential and prospect. It can be used to fabricate transparent electrodes, varistors, solar window battery, surface acoustic wave devices, gas sensors, light emitting diodes. In short wave region, ZnO can be used in the manufacture of ultraviolet light emitting devices and UV laser, is very important for improving the optical recording density and optical information access speed plays The role of high quality thin films and nano structure preparation has become an important factor for the application of ZnO. The liquid phase chemical method has the advantages of low cost, easy to realize large-scale production and other advantages, in recent years in the synthesis of nano materials has attracted the attention of researchers. However, the quality of the film increased, controllable growth and doping process the special nano structure has been the preparation problems to be solved by the study, the growth mechanism is not clear, the need for systematic experimental study using a variety of means. In this paper, two kinds of chemical method sol gel method (Sol-Gel) and chemical bath deposition (CBD) ZnO films as the research object, using the X ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) on the microstructure of ZnO thin films were studied, based on the principle analysis of thin films prepared by two methods The growth mechanism of ZnO films. The sol-gel method on glass substrates of Al doped ZnO thin films prepared by six with wurtzite structure.XRD test results show that when the concentration of Al is low, with the increase of Al doping amount, the peak position moves to the right, the doping amount is reached the maximum value of 3 at%. With the amount of Al further increases, the peak position moves to the left. When the doping amount of Al is more than 6 at%, the doping level of the films gradually deteriorated, resulting in the observed lattice will no longer change.AFM showed that the surface of ZnO films showed some wrinkles, this is because the gel in heat treatment of the stress caused by the change of the ZnO thin films with different doping concentration of aluminum is c axis preferred orientation, the doping amount of 3 at% in the preferred orientation of the strongest, with the doping content increases further, the degree of orientation decreased significantly.TEM results reveal that ZnO films by spherical or ellipsoidal particles and present Ming The growth characteristics of.ZnO thin film layered were significant after 5 times of spin coating (Spin-coating) formed in the grain interface layer is relatively thick, the formation of coarse grain layer obviously. The small particles of coarse grain layer formed between the fine grain layer. Compared to more aluminum (4-9at%) doped ZnO thin films, doping small amount (1 - 3 at%) coarse grain layer of ZnO thin film in particle size increased significantly, along with the level of growth trend. The analysis results show that the nucleus into the grain growth, the coarsening mechanism is complex. The final film forming orientation C may be caused by the self-assembly mechanism, since the comprehensive effect of texture mechanism and Osvaldo ripening mechanism results. The experimental results show that with the increase of Al content of impurities, ZnO grains are obviously refined. The analysis thinks, has not formed the doped A1 atoms in amorphous A1203 in the form of ZnO is formed on the grain boundary pinning of grain boundary motion, resulting in the decrease of the grain size of. The microstructure analysis of bath deposition of ZnO thin films prepared by the results show that the films are polycrystalline structure composed of columnar grains, each column of large grain size by the epitaxial growth of crystal particles on the surface layer of the seed seed and seed crystal orientation, which determines the orientation growth of columnar crystal. Electron microscopy analysis showed that in the film, directional adhesion model (Oriented attachment mechanism). The growth of film stability is poor, the long time of electron beam irradiation, continuous film is decomposed into a granular structure.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TQ132.41;TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡燕,錢公望,劉煥彬;測(cè)定單個(gè)粒子的薄膜法及其應(yīng)用[J];四川環(huán)境;1999年04期
2 甘璇璣 ,省德明;薄膜法在X射線熒光光譜分析中的應(yīng)用痕量稀土分量測(cè)定[J];光譜學(xué)與光譜分析;1985年06期
3 賀春福,任紅星;X-射線熒光分析中薄膜試樣的面積和厚度對(duì)分析結(jié)果的影響[J];分析化學(xué);1993年04期
4 張保安;錢公望;;檢測(cè)單個(gè)氣溶膠粒子的薄膜法及其研究進(jìn)展[J];分析測(cè)試學(xué)報(bào);2007年06期
5 李明宇;劉旭;張錦龍;馬欣;厲以宇;孫雪錚;顧培夫;;薄膜法布里-珀羅濾光片中反射高斯光束分裂現(xiàn)象[J];物理學(xué)報(bào);2007年03期
6 甘婷婷;張玉鈞;趙南京;殷高方;董欣欣;王亞萍;劉建國;劉文清;;薄膜法X射線熒光光譜對(duì)重金屬鉻元素檢測(cè)研究[J];光學(xué)學(xué)報(bào);2014年07期
7 王明光;楊慧;汪嘉恒;寧策;徐奕辰;祁陽;;納米氧化鋅摻鋁薄膜的微觀結(jié)構(gòu)研究[J];功能材料;2013年08期
8 馮麗萍,徐新;白寶石上生長SiO_2薄膜的工藝[J];材料開發(fā)與應(yīng)用;2005年03期
9 ;薄膜法回收溴[J];武漢大學(xué)學(xué)報(bào)(自然科學(xué));1973年02期
10 彤;;薄膜法分離NH_3和CO_2[J];云南化工;1989年04期
相關(guān)會(huì)議論文 前1條
1 李剛;孫連春;;薄膜位相延遲器的研究[A];2004年光學(xué)儀器研討會(huì)論文集[C];2004年
相關(guān)博士學(xué)位論文 前8條
1 孫秋;摻雜PZT薄膜的制備及微結(jié)構(gòu)與鐵電性能研究[D];哈爾濱工業(yè)大學(xué);2007年
2 周小芳;一些簡單氧化物半導(dǎo)體薄膜的LIV效應(yīng)及其輸運(yùn)性質(zhì)研究[D];昆明理工大學(xué);2010年
3 洪波;電沉積銅薄膜中織構(gòu)與內(nèi)應(yīng)力的研究[D];上海交通大學(xué);2008年
4 謝忍;鐵磁形狀記憶合金Ni-Mn-Ga薄膜的制備和性能研究[D];南京大學(xué);2013年
5 張玉梅;L1_0FePt薄膜的結(jié)構(gòu)和磁性研究[D];吉林大學(xué);2014年
6 于永生;L1_0FePt薄膜有序化行為和磁性能研究[D];哈爾濱工業(yè)大學(xué);2010年
7 張曉康;立方氮化硼薄膜的相變和光、電性能研究[D];蘭州大學(xué);2009年
8 李紅霞;釩酸鹽晶體與薄膜的生長、結(jié)構(gòu)及性能研究[D];山東大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 王振;強(qiáng)磁場(chǎng)下氧化法生長ZnO薄膜結(jié)構(gòu)演化及其對(duì)性能的影響[D];東北大學(xué);2014年
2 張懷斌;鐵酸鉍薄膜界面及生長缺陷研究[D];華東師范大學(xué);2016年
3 何龍;3ω法在薄膜界面熱阻測(cè)量中的應(yīng)用[D];電子科技大學(xué);2016年
4 王軒;硅晶體薄膜熱傳導(dǎo)性質(zhì)的計(jì)算機(jī)模擬[D];湖南師范大學(xué);2016年
5 楊慧;化學(xué)法制備ZnO薄膜的微觀結(jié)構(gòu)研究[D];東北大學(xué);2011年
6 方欣;溶膠—凝膠法制備多孔二氧化硅薄膜的研究[D];電子科技大學(xué);2009年
7 宋文韜;CaCu_3Ti_4O_(12)巨介電薄膜的制備與性能優(yōu)化[D];哈爾濱工業(yè)大學(xué);2009年
8 王高學(xué);金屬鐵磁薄膜的制備及其高頻磁性[D];蘭州大學(xué);2013年
9 孫雯;異價(jià)摻雜BiFeO_3-基薄膜的制備及性能研究[D];濟(jì)南大學(xué);2013年
10 劉嘉聰;合金化對(duì)Cu/SiO_2薄膜體系微觀結(jié)構(gòu)以及電性能的影響[D];上海交通大學(xué);2008年
,本文編號(hào):1648521
本文鏈接:http://sikaile.net/shekelunwen/minzhuminquanlunwen/1648521.html