基于模糊邏輯的智能駕駛關(guān)鍵技術(shù)研究
發(fā)布時(shí)間:2023-10-12 02:56
在過去的30年,用于城市地面交通工具中自動(dòng)駕駛技術(shù)的開發(fā)已經(jīng)得到了飛速的發(fā)展。目前,現(xiàn)代自主駕駛車輛已具備一定感知車輛周圍環(huán)境的能力,比如根椐分類所分析對象的類型并進(jìn)行檢測;觀測周身環(huán)境的變化并評估對象的移動(dòng)可能性;在遵循交通法規(guī)的基礎(chǔ)之上對復(fù)雜的交通現(xiàn)狀進(jìn)行車輛路徑規(guī)劃并分析障礙物的移動(dòng)方向等。在這些復(fù)雜的情況下,這種自主導(dǎo)航能力是建立在很多學(xué)科(例如:計(jì)算機(jī)學(xué)、電子工程學(xué)、機(jī)器人技術(shù)和控制學(xué)等)的基礎(chǔ)之上跨越并結(jié)合之后研發(fā)的。 本學(xué)位論文對自主車輛系統(tǒng)所包含很多重疊和整合系統(tǒng)及技術(shù)知識進(jìn)行了探討,并對從攝像機(jī)鏡頭捕捉到的圖像以及對于車輛位置、車輛性質(zhì)種類、不同物體的速度及來自從各種傳感器如GPS、雷達(dá)、相機(jī)、和其他人對車輛周圍的危險(xiǎn)指數(shù)分析并對相關(guān)數(shù)據(jù)資料加以分析和總結(jié)。值得說明的是對所研究對象來判斷并得出詳細(xì)描述他們的內(nèi)容研究(比如根椐他們的外部形象特征來將其歸類)不在本論文的范圍內(nèi)。 首先我們設(shè)計(jì)或規(guī)劃得出描述每個(gè)對象的N個(gè)特征向量等數(shù)據(jù),每個(gè)特征向量包含的數(shù)據(jù)描述如下: (1)對象屬性(比如汽車、人群、樹木、障礙物等等) (2)測試車輛和物體之間的距離以[以(x,y)坐標(biāo)軸的...
【文章頁數(shù)】:90 頁
【學(xué)位級別】:碩士
【文章目錄】:
ABSTRACT
摘要
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1: INTRODUCTION
1.1 AUTONOMOUS VEHICLE CONTROL
1.2 INTELLIGENT TRANSPORTATION SYSTEMS
1.3 CURRENT STATE OF THE ART
1.4 CONTRIBUTION CHALLENGES IN AUTONOMOUS DRIVING
1.5 CONTRIBUTION OF THIS THESIS
1.6 THE STRUCTURE OF THIS THESIS
1.7 SUMMARY
CHAPTER 2 : Overview
2.1 CLASSIFICATION TECHNIQUES
2.1.1 K-NEAREST NEIGHBOR ALGORITHM
2.1.2 NEURAL NETWORKS ALGORITHM
2.1.3 K-MEANS ALGORITHM
2.1.4 SUPPORT VECTOR MACHINE ALGORITHM
2.2 DATA FUSION SYSTEMS
2.3 FUZZY LOGIC CONTROL
2.4 SUMMARY
CHAPTER 3: PROPOSED RESEARCH METHODOLOGY
3.1 DATA SET
3.2 CLASSIFICATION TECHNIQUES
3.2.1 RESULTS
3.2.2 COMPARISON BETWEEN USED CLASSIFICATION TECHNIQUES
3.3 DATA FUSION
3.3.1 DATA FUSION APPROACH 1
3.3.2 DATA FUSION APPROACH 2
3.3.3 COMPARISON BETWEEN TWO APPROACHES
3.4 FUZZY LOGIC CONTROL DECISION ALGORITHM
Chapter 4: Results
4.1 Summary
CHAPTER 5: Conclusion
REFERENCES
ACKNOWLEDGMENTS
Appendix A
本文編號:3853314
【文章頁數(shù)】:90 頁
【學(xué)位級別】:碩士
【文章目錄】:
ABSTRACT
摘要
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
CHAPTER 1: INTRODUCTION
1.1 AUTONOMOUS VEHICLE CONTROL
1.2 INTELLIGENT TRANSPORTATION SYSTEMS
1.3 CURRENT STATE OF THE ART
1.4 CONTRIBUTION CHALLENGES IN AUTONOMOUS DRIVING
1.5 CONTRIBUTION OF THIS THESIS
1.6 THE STRUCTURE OF THIS THESIS
1.7 SUMMARY
CHAPTER 2 : Overview
2.1 CLASSIFICATION TECHNIQUES
2.1.1 K-NEAREST NEIGHBOR ALGORITHM
2.1.2 NEURAL NETWORKS ALGORITHM
2.1.3 K-MEANS ALGORITHM
2.1.4 SUPPORT VECTOR MACHINE ALGORITHM
2.2 DATA FUSION SYSTEMS
2.3 FUZZY LOGIC CONTROL
2.4 SUMMARY
CHAPTER 3: PROPOSED RESEARCH METHODOLOGY
3.1 DATA SET
3.2 CLASSIFICATION TECHNIQUES
3.2.1 RESULTS
3.2.2 COMPARISON BETWEEN USED CLASSIFICATION TECHNIQUES
3.3 DATA FUSION
3.3.1 DATA FUSION APPROACH 1
3.3.2 DATA FUSION APPROACH 2
3.3.3 COMPARISON BETWEEN TWO APPROACHES
3.4 FUZZY LOGIC CONTROL DECISION ALGORITHM
Chapter 4: Results
4.1 Summary
CHAPTER 5: Conclusion
REFERENCES
ACKNOWLEDGMENTS
Appendix A
本文編號:3853314
本文鏈接:http://sikaile.net/shekelunwen/ljx/3853314.html
最近更新
教材專著