基于改進粒子群算法的分數(shù)階系統(tǒng)參數(shù)辨識(英文)
發(fā)布時間:2021-05-01 03:27
為了更好地辨識分數(shù)階系統(tǒng)的參數(shù),提出了一種基于Tent映射的改進粒子群算法(MPSO).采用8個經(jīng)典測試函數(shù)對MPSO算法的性能進行了測試,并與自適應時變加速器算法(ACPSO)、改進的被動聚集粒子群算法(IPSO)以及遺傳算法(GA)進行對比,驗證了所提算法的有效性.在已知模型結(jié)構(gòu)和未知模型結(jié)構(gòu)的基礎(chǔ)上,利用所提算法對2種典型分數(shù)階模型進行參數(shù)辨識.參數(shù)辨識結(jié)果表明,應用位置信息的平均值有利于充分共享個體間的信息,從而能夠加快全局搜索速度;Tent映射具有的均勻性和遍歷性能夠防止位置信息中極值的產(chǎn)生,避免算法陷入局部最優(yōu).MPSO算法收斂速度快、精度高,是一種有效且實用的方法.
【文章來源】:Journal of Southeast University(English Edition). 2018,34(01)EI
【文章頁數(shù)】:9 頁
【文章目錄】:
1 Theory
1.1 Definition of fractional-order derivatives and integrals
1.2 Fractional-order systems
1.3 PSO variants
1.3.1 ACPSO algorithm
1.3.2 IPSO algorithm
2 Proposed MPSO Algorithm
2.1 Modified Tent mapping
2.2 MPSO algorithm
2.3 Performance evaluation
2.3.1 Classical test functions
2.3.2 Parameter analysis
2.3.3 Evaluation results
3 Simulations
3.1 Identification of known fractional-order model structure
3.2 Identification for unknown fractional-order mod-el structure
4 Conclusions
本文編號:3170053
【文章來源】:Journal of Southeast University(English Edition). 2018,34(01)EI
【文章頁數(shù)】:9 頁
【文章目錄】:
1 Theory
1.1 Definition of fractional-order derivatives and integrals
1.2 Fractional-order systems
1.3 PSO variants
1.3.1 ACPSO algorithm
1.3.2 IPSO algorithm
2 Proposed MPSO Algorithm
2.1 Modified Tent mapping
2.2 MPSO algorithm
2.3 Performance evaluation
2.3.1 Classical test functions
2.3.2 Parameter analysis
2.3.3 Evaluation results
3 Simulations
3.1 Identification of known fractional-order model structure
3.2 Identification for unknown fractional-order mod-el structure
4 Conclusions
本文編號:3170053
本文鏈接:http://sikaile.net/projectlw/xtxlw/3170053.html
最近更新
教材專著