木霉菌WL-Go對硒和硒合金納米粒子的生物合成、表征及其應(yīng)用
發(fā)布時間:2024-05-16 04:14
本文利用真菌Trichoderma sp.WL-Go合成納米硒(Se NPs)和硒化鉛納米顆粒(PbSe NPs),與傳統(tǒng)方法相比,該方法是一種較為簡單且環(huán)境友好的合成方法。前期的研究表明菌株WL-Go具有極強(qiáng)的生長能力,且能在胞外分泌大量生物活性物質(zhì),例如氧化還原蛋白、多糖及諸多其它次生代謝產(chǎn)物等,合成的兩種非金屬和半導(dǎo)體納米顆粒均展示出較高產(chǎn)率和良好的分散性。通過過濾獲得菌株WL-Go的培養(yǎng)基上清液,并利用該上清液合成SeNPs。研究表明Se NPs合成的最佳條件是pH為8、SeO2在菌株培養(yǎng)24 h后接種以及SeO2濃度為2mM。紫外-可見光譜(UV-vis)表征表明合成的納米硒溶液在550 nm處出現(xiàn)明顯的特征吸收峰;而透射電子顯微鏡(TEM)圖像顯示合成的納米硒顆粒呈現(xiàn)球形和偽球形,尺寸分布為20-220 nm;X射線衍射(XRD)分析表明Se NPs在(100)、(101)和(102)面出現(xiàn)特征吸收峰,表明合成的納米顆粒為面心立方體結(jié)構(gòu);傅里葉紅外光譜(FTIR)分析表明合成的納米硒顆粒表面存在著一些官能團(tuán)例如C=C、C-C以及-...
【文章頁數(shù)】:88 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
1 Introduction
1.1 Trichoderma species
1.2 Background of Selenium
1.2.1 Selenium toxicity
1.2.2 Bioremediation abilities of selenium
1.2.3 Microbial reduction mechanisms and recovery of biogenic selenium (Se0) nanoparticles
1.3 Genesis of nanotechnology
1.4 Physical synthesis of nanoparticles
1.5 Chemical synthesis of nanoparticles
1.6 Biological synthesis of nanoparticles
1.6.1 Biosynthesis of nanoparticles by plants
1.6.2 Synthesis by microorganisms
1.7 Mono-nanoparticles and bimetallic nanoparticles synthesis route
1.8 Semiconductor nanoparticles
1.9 Factors affecting synthesis of nanoparticles
1.9.1 Temperature
1.9.2 pH
1.9.3 Reaction time
1.9.4 Precursors concentration
1.10 Global outlook on nanotechnology and its applications
1.11 Research objectives, methodology, and contents of technical routes
1.11.1 Research Objectives
1.11.2 Research methodology
1.11.3 Technical route of research and experiments
2 Experimental Methods
2.1 Materials
2.2 Biosynthesis of selenium nanoparticles (Se NPs) by Trichoderma sp. WL-Go
2.2.1 Synthesis of Se NPs at different p H
2.2.2 Synthesis of Se NPs at different inoculation time
2.2.3 Synthesis of Se NPs at different concentration
2.2.4 The possible mechanism of the Se NPs synthesis
2.3 Preparation of lead selenide semiconductor nanoparticles (Pb Se NPs)
2.3.1 Synthesis of Pb Se NPs at different p H
2.3.2 Synthesis of Pb Se NPs at different Trichoderma sp. WL-Go biomass
2.3.3 Synthesis of Pb Se NPs at different concentration ratio
2.4 Characterization techniques of synthesized nanoparticles
2.5 Antimicrobial activity
2.6 Antioxidant activity
2.7 Photocatalytic activity
3 Detailed discussions on synthesis, characterization and biocompatible and antioxidant activity of Se NPs by Trichoderma sp. WL-Go
3.1 Introduction
3.2 Experimental section
3.3 Results and discussion
3.3.1 Synthesis of Se NPs at different p H
3.3.2 Synthesis of Se NPs at different Se02 inoculation time
3.3.3 Synthesis of Se NPs at different Se O2 concentration
3.4 Characterization of Se NPs
3.4.1 TEM
3.4.2 X-ray diffraction (XRD)
3.4.3 ICP-OES
3.4.4 The possible mechanism of the Se NPs synthesis
3.4.5 SDS-PAGE and Zeta potential/DLS
3.5 Antimicrobial/ Biocompatibility properties of Se NPs synthesized Trichoderma sp. WL-Go in culture broth
3.6 Antioxidant activity of Se NPs
4 Synthesis of Pb Se NPs by Trichoderma sp. WL-Go
4.1 Introduction
4.2 Experimental section
4.3 Results and discussion
4.4 Optimal synthesis conditions of Pb Se NPs
4.5 Absorbance of powdered Se NPs and Pb Se NPs by UV-vis analysis
4.6 Characterization of Pb Se NPs
4.6.1 Transmission Electron Microscopy
4.6.2 X-ray diffraction analysis
4.6.3 Fourier transfer infra-red spectroscopy
4.6.4 Raman Spectroscopy
4.6.5 Photoluminescence (PL) Spectroscopy
4.7 Antioxidant activity of Pb Se NPs
4.8 Photocatalytic activity of Pb Se NPs
5 Conclusions and recommendations
5.1 Conclusions
5.2 Recommendation
References
Research Project and Publications during the Study in MSc Environmental Science andEngineering
Acknowledgement
Curriculum Vitae
本文編號:3974673
【文章頁數(shù)】:88 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
1 Introduction
1.1 Trichoderma species
1.2 Background of Selenium
1.2.1 Selenium toxicity
1.2.2 Bioremediation abilities of selenium
1.2.3 Microbial reduction mechanisms and recovery of biogenic selenium (Se0) nanoparticles
1.3 Genesis of nanotechnology
1.4 Physical synthesis of nanoparticles
1.5 Chemical synthesis of nanoparticles
1.6 Biological synthesis of nanoparticles
1.6.1 Biosynthesis of nanoparticles by plants
1.6.2 Synthesis by microorganisms
1.7 Mono-nanoparticles and bimetallic nanoparticles synthesis route
1.8 Semiconductor nanoparticles
1.9 Factors affecting synthesis of nanoparticles
1.9.1 Temperature
1.9.2 pH
1.9.3 Reaction time
1.9.4 Precursors concentration
1.10 Global outlook on nanotechnology and its applications
1.11 Research objectives, methodology, and contents of technical routes
1.11.1 Research Objectives
1.11.2 Research methodology
1.11.3 Technical route of research and experiments
2 Experimental Methods
2.1 Materials
2.2 Biosynthesis of selenium nanoparticles (Se NPs) by Trichoderma sp. WL-Go
2.2.1 Synthesis of Se NPs at different p H
2.2.2 Synthesis of Se NPs at different inoculation time
2.2.3 Synthesis of Se NPs at different concentration
2.2.4 The possible mechanism of the Se NPs synthesis
2.3 Preparation of lead selenide semiconductor nanoparticles (Pb Se NPs)
2.3.1 Synthesis of Pb Se NPs at different p H
2.3.2 Synthesis of Pb Se NPs at different Trichoderma sp. WL-Go biomass
2.3.3 Synthesis of Pb Se NPs at different concentration ratio
2.4 Characterization techniques of synthesized nanoparticles
2.5 Antimicrobial activity
2.6 Antioxidant activity
2.7 Photocatalytic activity
3 Detailed discussions on synthesis, characterization and biocompatible and antioxidant activity of Se NPs by Trichoderma sp. WL-Go
3.1 Introduction
3.2 Experimental section
3.3 Results and discussion
3.3.1 Synthesis of Se NPs at different p H
3.3.2 Synthesis of Se NPs at different Se02 inoculation time
3.3.3 Synthesis of Se NPs at different Se O2 concentration
3.4 Characterization of Se NPs
3.4.1 TEM
3.4.2 X-ray diffraction (XRD)
3.4.3 ICP-OES
3.4.4 The possible mechanism of the Se NPs synthesis
3.4.5 SDS-PAGE and Zeta potential/DLS
3.5 Antimicrobial/ Biocompatibility properties of Se NPs synthesized Trichoderma sp. WL-Go in culture broth
3.6 Antioxidant activity of Se NPs
4 Synthesis of Pb Se NPs by Trichoderma sp. WL-Go
4.1 Introduction
4.2 Experimental section
4.3 Results and discussion
4.4 Optimal synthesis conditions of Pb Se NPs
4.5 Absorbance of powdered Se NPs and Pb Se NPs by UV-vis analysis
4.6 Characterization of Pb Se NPs
4.6.1 Transmission Electron Microscopy
4.6.2 X-ray diffraction analysis
4.6.3 Fourier transfer infra-red spectroscopy
4.6.4 Raman Spectroscopy
4.6.5 Photoluminescence (PL) Spectroscopy
4.7 Antioxidant activity of Pb Se NPs
4.8 Photocatalytic activity of Pb Se NPs
5 Conclusions and recommendations
5.1 Conclusions
5.2 Recommendation
References
Research Project and Publications during the Study in MSc Environmental Science andEngineering
Acknowledgement
Curriculum Vitae
本文編號:3974673
本文鏈接:http://sikaile.net/projectlw/swxlw/3974673.html
最近更新
教材專著