天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 理工論文 > 輕工業(yè)論文 >

Modelling Drying Kinetics and Ameliorative Effects of Contro

發(fā)布時間:2023-04-01 00:24
  本課題是為了了解干燥動力學(xué)并通過相對濕度(RH)來確定干燥技術(shù)中植物化學(xué)降解和褐變色素沉著的改善機制。利用新設(shè)計的RH-對流-熱風(fēng)干燥器,在不同的RH條件下對選定的農(nóng)產(chǎn)品進行干燥,使之成為可能。在第一個研究中,利用8個數(shù)學(xué)模型預(yù)測了香蕉在RH(10%20%30%和40%)、70°C和2.0 m/s風(fēng)速下的干燥動力學(xué)。利用相關(guān)系數(shù)(R2)、根均方誤差(RMSE)和還原卡方(χ2)等主要參數(shù),檢驗了模型的擬合優(yōu)度。結(jié)果表明,Midillii-kucuk模型能夠較好地描述R2、RMSE對香蕉切片的RH-對流干燥,其范圍分別為0.99942-0.99986、0.00002-0.00008和0.0142-0.01618。電能分析表明,RH每增加10%,能耗就會增加17.9-4.0%,從而在兩者之間建立了直接關(guān)系。差示掃描量熱法測得的熱圖結(jié)果表明,干香蕉的成分、粒度和在基質(zhì)中的分散受到RH變化的影響,從而引起了固體轉(zhuǎn)變的變化。這又一次影響了香蕉的結(jié)晶度,使得相對于相對濕度較高的干燥樣品,相對濕度較低的干燥樣品更脆。為了了解RH在邁拉...

【文章頁數(shù)】:244 頁

【學(xué)位級別】:博士

【文章目錄】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
Nomenclature
CHAPTER 1 GENERAL INTRODUCTION AND PROJECT OBJECTIVES
    1.1 Introduction
    1.2 Main Objectives and Technical roadmap
    1.3 Organization of dissertation
    1.4 Reference
CHAPTER 2 LITERATURE REVIEW
    2.1 INTRODUCTION
    2.2 Drying technology
    2.3 Conventional hot-air drying system
    2.4 Challenges associated with convectional drying system
    2.5 New improved HAD dryers in the drying industry.
    2.6 Principles of Relative humidity controlled (RH) dryer
    2.7 Dying research using RH drying conditions
    2.8 Pretreatment in drying
    2.9 Phytochemicals
    2.10 Drying research involving phytochemical degradations.
        2.10.1 β-carotene degradation
        2.10.2 Vitamin C degradation
        2.10.3 Polyphenols degradation
        2.10.4 Antioxidant degradation
    2.11 Browning pigmentation in HAD
        2.11.1 Enzymatic browning (EBI)
        2.11.2 Non-enzymatic browning (NBI)
    2.12 Reference
CHAPTER 3 MODELING DRYING CHARACTERISTICS, ENERGY CONSUMPTION AND THERMAL PROPERTIES OF DRIED BANANA (MUSA SSP.) UNDER DIFFERENT RELATIVE HUMIDITY
    3.1 Introduction
    3.2 Materials and Methods
        3.2.1 Preparation of Samples
        3.2.2 Drying with Relative humidity (RH) convective control hot-air dryer
        3.2.3 Experimental design for drying
        3.2.4 Modeling of drying kinetics
        3.2.5 Effective moisture diffusivity calculation
        3.2.6 Energy consumption
        3.2.7 Differential scanning calorimetry (DSC)
        3.2.8 Statistical analysis
    3.3 Results and Discussion
        3.3.1 Effect of RH on Dying Curves
        3.3.2 Fitting of the drying curves
        3.3.3 Effective moisture diffusivity (Deff)
        3.3.4 Energy consumption
        3.3.5 Effect of RH on characteristics of DSC thermogram
    3.4 Conclusion
    3.5 Reference
CHAPTER 4 MITIGATING EFFECT OF RELATIVE HUMIDITY (RH) ON 2-FUROYLMETHYL-AMINO ACID FORMATION
    4.1. Introduction
    4.2. Materials and Methods
        4.2.1 Drying with humidity control convective hot-air dryer.
        4.2.2 Determination of 2-furoylmethyl amino acids (2-FM-AA)
        4.2.3 Kinetics models and parameters for 2-furoylmethyl amino acids formation
        4.2.4 Thermodynamic analysis 2-furoylmethyl amino acids formation
        4.2.5 Browning assessments
        4.2.6 Color measurements
        4.2.7 Fourier transform infrared (FT-IR) spectroscopy
        4.2.8 Statistical analysis
    4.3. Results and discussions
        4.3.1 Mitigating effect of RH on 2-furoylmethyl amino acids formation
        4.3.2 Formation kinetics of 2-furoylmethyl amino acids
        4.3.3 Thermodynamic analysis of 2-furoylmethyl amino acids
        4.3.4 Mitigating effect of RH on color parameters and browning index
        4.3.5 Multivariate analysis of color, browning index and 2-furoylmethyl amino acids formation
        4.3.6 Effect of RH on functional group revealed by FT-IR spectroscopy
    4.4. Conclusion
    4.5. Reference
CHAPTER 5 DRYING CHARACTERISTIC, ENZYME INACTIVATION AND BROWNING PIGMENTATION KINETICS OF CONTROLLED HUMIDITY-CONVECTIVE DRYING OF BANANA SLICES
    5.1 Introduction
    5.2 Materials and Methods
        5.2.1 Preparation of Samples
        5.2.2 Ultrasound pretreatments
        5.2.3 Drying with Relative humidity (RH) convective hot-air dryer
        5.2.4 Calculation of moisture effective diffusivity (Deff)
        5.2.5 Enzyme inactivation
            5.2.5.1 Enzyme extraction
            5.2.5.2 Enzyme Assays
            5.2.5.3 Kinetics models of enzyme inactivation
        5.2.6 Browning assessments
            5.2.6.1 Enzymatic browning Index (EBI) and Non- enzymatic browning index (NBI)
            5.2.6.2 Kinetics models of browning assessments
        5.2.7 Quality assessment
            (1) Color measurements
            (2) Texture
            (3) Microstructure evaluation with scanning electron microscopy (SEM)
        5.2.8 Statistical analysis
    5.3 Results and Discussion
        5.3.1 Effect of US and RH on Drying Curves
        5.3.2 Influence of US and RH on effective moisture diffusivity (Deff)
        5.3.3 Influence of US and RH and on enzymes inactivation
        5.3.4 Enzymes inactivation kinetics
        5.3.5 Influences of US and RH on Browning pigmentation
        5.3.6 Browning indexes kinetics
        5.3.7 Influence of US and RH on Color and texture parameters
        5.3.8 Influences of RH and US on microstructure
    5.4 Conclusion
    5.5 References
CHAPTER 6 MITIGATION OF ENERGY CONSUMPTION AND BROWNING PIGMENTATION THROUGH ETHYL OLEATE AND ULTRASONIC PRETREATMENTS IN DEHYDRATED BANANA
    6.1. Introduction
    6.2. Materials and Methods
        6.2.1 Preparation of Samples
        6.2.2 Ultrasonic and Ethyl oleate pretreatments
        6.2.3 Experimental design
        6.2.4 Drying with Relative humidity (RH) convective hot-air dryer
        6.2.5 Calculation of moisture effective diffusion (Deff)
        6.2.6 Energy consumption
        6.2.7 Enzyme extraction and assay
        6.2.8 Color
        6.2.9 Browning assessments
        6.2.10 Statistical analysis
    6.3. Result and Discussion
        6.3.1 Effect of US and ethyl oleate pretreatment on Drying Curves
        6.3.2 Effect of US and ethyl oleate pretreatment on Energy consumption and moisture effective diffusion
        6.3.3 Influence of US and ethyl oleate on enzymes inactivation
        6.3.4 Influence of US and ethyl oleate on color and browning pigmentation
        6.3.5 Multivariate analysis
    6.4. Conclusion
    6.5. Reference
CHAPTER 7 THE KINETICS STUDY OF BIOACTIVE COMPOUNDS AND ANTIOXIDANT DEGRADATION OF DRIED BANANA(MUSA SSP.) SLICES USING CONTROLLED HUMIDITY CONVECTIVE AIR DRYING.
    7.1 Introduction
    7.2 Materials and Methods
        7.2.1 Preparation of Samples
        7.2.2 Drying with humidity control convective hot-air dryer.
        7.2.3 Calculation of moisture effective diffusion (Deff)
        7.2.4 Extraction of bioactive compounds and antioxidant
            7.2.4.1 Antioxidant capacity
            7.2.4.2 Total Phenolic content (TPC)
            7.2.4.3 Total flavonoids content (TFC)
        7.2.5 Kinetics models for bioactive compounds and antioxidant degradation
        7.2.6 Color measurements
        7.2.7 Texture
        7.2.8 Statistical analysis
    7.3 Results and discussion
        7.3.1 Effect of RH on bioactive compounds and antioxidant
        7.3.2 Degradation kinetics of bioactive and antioxidant compounds
        7.3.3 Influence of RH on drying kinetics of banana slices
        7.3.4 Influence of RH on effective moisture diffusivity (Deff)
    7.4 Conclusion
    7.5 Reference
CHAPTER 8 MODELING OF DRYING AND AMELIORATIVE EFFECTS OF RELATIVE HUMIDITY (RH) AGAINST β-CAROTENE DEGRADATION AND COLOR OF CARROT (DAUCUS CAROTA VAR) SLICES)
    8.1 Introduction
    8.2 Material and Methods
        8.2.1 Raw Material
        8.2.2 Drying with humidity control convective hot-air dryer.
        8.2.3 Modeling of drying kinetics
        8.2.4 Calculation of moisture effective diffusion (Deff)
        8.2.5 Activation energy ()
        8.2.6 Determination of β-carotene
        8.2.7 Kinetics models for β-carotene degradation
        8.2.8 Thermodynamic analysis of β-carotene degradation
        8.2.9 Color measurements
        8.2.10 Statistical analysis
    8.3 Results and discussions
        8.3.1 Influence of RH on drying kinetics of carrot slices
        8.3.2 Evaluation of drying mathematical models
        8.3.3 Effective moisture diffusivity (Deff)
        8.3.4 Activation energy
        8.3.5 Degradation kinetics of β-carotene
        8.3.6 Thermodynamic analysis of β-carotene degradation
        8.3.7 Effect of RH on color parameters
        8.3.8 Correlation between β-carotene and color parameters
    8.4 Conclusion
    8.5 Reference
CHAPTER 9 DRYING KINETICS AND AMELIORATIVE EFFECT OF RELATIVE HUMIDITY (RH) ON PHENOLIC, VITAMIN C,ANTIOXIDANT AND FUNCTIONAL GROUPS OF DRIED PINEAPPLE (ANANAS COMOSUS) SLICES
    9.1 Introduction
    9.2 Materials and Methods
        9.2.1 Chemicals and Reagents
        9.2.2 Preparation of Samples
        9.2.3 Drying with humidity control convective hot-air dryer.
        9.2.4 Modeling of drying kinetics
        9.2.5 Extraction of phenolic compounds in pineapple slices
        9.2.6 HPLC-DAD analysis
        9.2.7 Total phenolic contents (TPC)
        9.2.8 Total flavonoid contents (TFC)
        9.2.9 Antioxidant activity assays
            9.2.9.1 DPPH free radical assay
            9.2.9.2. Ferric reducing antioxidant power (FRAP)
            9.2.9.3 Reducing power capacity
        9.2.10 Determination of vitamin C
        9.2.11 Kinetics models and parameters for vitamin C degradation
        9.2.12 Color measurements
        9.2.13 Fourier transform infrared (FT-IR) spectroscopy
        9.2.14 Statistical analysis
    9.3 Results and discussions
        9.3.1 Influence of RH on drying kinetics of pineapple slices
        9.3.2 Evaluation of drying mathematical models
        9.3.3 Mitigating effect of RH on phytochemical, color and antioxidant concentrations
        9.3.4 Mitigating effect of RH on Phenolic profile
        9.3.5 Correspondence analysis
        9.3.6 Mitigating effect of RH on functional group revealed by FT-IR spectroscopy
        9.3.7 Mitigating effect of RH of vitamin C degradation
    9.4 Conclusion
    9.5 Reference
CHAPTER 10 GENERAL CONCLUSION AND RECOMMENDATION
    10.1 Modelling drying kinetics in RH-hot air dyer
    10.2 Browning pigmentation
    10.3 Phytochemical degradation
    10.4 NOVELTY
Published Articles



本文編號:3776086

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/projectlw/qgylw/3776086.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶29fe8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com