Effect of Conventional and Ultrasonic Processes on the Funct
發(fā)布時(shí)間:2022-01-19 04:05
全球人口的迅速增長(zhǎng),迫切需要替代性的蛋白質(zhì)來源。因此,昆蟲被列為一個(gè)潛在資源,黑水虻(H.illucens,HIL)由于含有豐富的蛋白質(zhì)含量,并能轉(zhuǎn)化廢棄有機(jī)質(zhì),對(duì)環(huán)境有利。在未來20-30年內(nèi),人類可能會(huì)依賴?yán)ハx蛋白。從食用昆蟲中提取組成蛋白/制備蛋白水解物以用于新型食品應(yīng)用,是一種很有前途的方法。在這方面,進(jìn)行工業(yè)化應(yīng)用的成功取決于提高產(chǎn)量、功能和/或提高生物活性的工藝條件。因此,需要測(cè)定這些新的分離蛋白的功能性,以確定它們?cè)谑称放浞街械臐撛谟猛。為了獲得蛋白質(zhì)分離物/水解物,可以采用傳統(tǒng)和新的提取及水解技術(shù)。這些技術(shù)的應(yīng)用可能對(duì)產(chǎn)物(分離物和水解物)產(chǎn)生不同的影響,從而影響其功能性、生物活性和在食品配方中的應(yīng)用。傳統(tǒng)的提取和水解工藝,已經(jīng)在工業(yè)上被廣泛應(yīng)用許多年了。然而,最近有文獻(xiàn)證明,超聲波等新技術(shù)在提高產(chǎn)品活性和提取率,同時(shí)降低酶消耗、生產(chǎn)成本和確保最終產(chǎn)品質(zhì)量方面具有潛在的用途。然而,也有報(bào)道指出,超聲波可能會(huì)損害蛋白質(zhì)的某些功能特性。為此,本研究主要研究常規(guī)(堿性輔助提。┖统曁幚韺(duì)對(duì)黑水虻幼蟲蛋白質(zhì)和水解液的功能性和生物活性(體外抗氧化性)的影響。研究的主要內(nèi)容和結(jié)果...
【文章來源】:江蘇大學(xué)江蘇省
【文章頁(yè)數(shù)】:227 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
DEDICATION
ACKNOWLEDGEMENT
Abstract
摘要
List of abbreviations
CHAPTER 1 INTRODUCTION
1.1 General background
1.2 H.illucens
1.2.1 Origin/General Description
1.2.2 Classification
1.2.3 Nutritional value/facts of H.illucens larvae
1.3 Processing of insects prior to protein extraction
1.4 Extraction of insect protein
1.5 Alkali-aided protein extraction and principle/mechanism of operation
1.6 Functional properties of insect protein/protein preparations
1.7 Oxidation impact invivo,and action of antioxidants from chemical/natural source
1.8 Antioxidant activity/bioactivity of insect protein
1.9 Hydrolyisis of proteins/protein preparations
1.10 Use of Novel technology(Ultrasound)in processing
1.11 Specific objectives
1.12 Organization of dissertation
1.13 References
CHAPTER 2 EDIBLE INSECT PROTEIN FOR FOOD APPLICATIONS:EXTRACTION,COMPOSITION,AND FUNCTIONAL PROPERTIES
2.1 Introduction
2.2 Materials and Methods
2.2.1 HIL,chemicals and reagents
2.2.2 Larvae meal preparation
2.2.3 Proximate analysis
2.2.4 Protein extraction,yield,and single factor experiment
2.2.5 Optimization of the extraction conditions
2.2.6 Amino acid composition,physichochemical,functional properties,and fluorescence of HIL protein isolates
2.2.6.1 Amino acid analysis
2.2.6.2 Proximate analysis
2.2.6.3 Bulk density
2.2.6.4 Colour analysis
2.2.6.5 Water/oil absorption capacities
2.2.6.6 Nitrogen solubility
2.2.6.7 Foaming properties
2.2.6.8 Intrinsic fluorescence(IF)analysis
2.2.7 Effect of Ultrasonication treatment on extraction yield
2.2.7.1 Screening of MFCU frequency mode
2.2.7.2 Influence of ultrasonication time
2.2.7.3 Influence of ultrasonic power density
2.2.8 Statistical analysis
2.3 Results and Discussion
2.3.1 Proximate composition of defatted and un-defatted HIL meal
2.3.2 Effect of time,alkaline solution to sample ratio,and temperature on protein extraction yield(single factor investigation)
2.3.3 Model fitting for extraction of protein from HIL meal
2.3.4 Effect of extraction parameters on yield of HIL protein
2.3.5 Optimal conditions and validation of model for extraction of protein from HIL
2.3.6 Amino acid component and physicochemical characteristics of HIL protein isolate
2.3.6.1 Amino acid component
2.3.6.2 Protein contents of extracts
2.3.6.3 Bulk density
2.3.6.4 Colour analysis
2.3.7 Functional properties of HIL protein isolate
2.3.7.1 Water/oil absorption capacities
2.3.7.2 Nitrogen solubility
2.3.7.3 Foaming properties
2.3.7.4 Intrinsic fluorescence(IF)of HIL protein isolates
2.3.8 Influence of Ultrasonication treatment on protein extraction yield and content
2.3.8.1 MFCU frequency mode screening
2.3.8.2 Effect of sonication time
2.3.8.3 Effect of power density
2.3.8.4 Verification test
2.3.8.5 Protein content
2.4 Conclusion
2.5 References
CHAPTER 3 SONOCHEMICAL ACTION AND REACTION OF EDIBLE INSECT PROTEIN:INFLUENCE ON ENZYMOLYSIS REACTION-KINETICS,FREE-GIBBS,STRUCTURE AND ANTIOXIDANT CAPACITY
3.1 Introduction
3.2 Materials and Methods
3.2.1 Materials
3.2.2 Multi frequency control ultrasound(MFCU)pretreatment of HILMP
3.2.3 Enzyme hydrolysis of HILMP
3.2.4 Measure of hydrolysis
3.2.5 Estimation of hydrolyzed protein concentration Hpc
3.2.6 Enzymolysis reaction-rate(k)
3.2.7 Thermodynamics of HILMP enzymolysis
3.2.8 Hydrolysate peptide concentration
3.2.9 Preparation of HILMP isolates
3.2.10 Ultraviolet-visible spectra(UV-VS)analysis
3.2.11 Intrinsic fluorescence analysis(IFA)
3.2.12 Micrographic imaging analysis
3.2.13 Scavenging activity-Hydroxyl radical(SAHR)analyses
3.2.14 Statistical analysis
3.3 Results and Discussion
3.3.1 Influence of sonication and control pretreatments on HILMP enzymolysis
3.3.2 Effects of sonication pretreatment and control enzymolysis on rate-reaction constant k
3.3.3 Effects of sonication pretreatment and control enzymolysis on thermodynamic limits
3.3.4 Ultraviolet-visible spectra(UV-VS)analysis
3.3.5 Intrinsic fluorescence analysis(IFA)
3.3.6 Micrographic imaging analysis(MIA)
3.3.7 Scavenging activity(SAHR)of HILMP hydrolysate samples
3.4 Conclusions
3.5 References
CHAPTER 4 TECHNO-FUNCTIONAL ATTRIBUTE AND ANTIOXIDATIVE CAPACITY OF EDIBLE INSECT PROTEIN PREPARATIONS AND HYDROLYSATES THEREOF:EFFECT OF MULTIPLE MODE SONOCHEMICAL ACTION
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Methods
4.2.2.1 H.illucens larvae protein isolate(HILP)
4.2.2.2 HILP treatments
4.2.2.3 H.illucens larvae protein hydrolysates(HILPHs)
4.2.3 Determination of techno-functional attributes
4.2.3.1 Solubility
4.2.3.2 Emulsion properties(EP)
4.2.3.3 Foaming properties
4.2.4 Quantification of antioxidative activity
4.2.4.1 Scavenging capacity-ABTS radical(ABTSRSC)
4.2.4.2 Ferric-reducing power (FRP)
4.2.4.3 Scavenging activity-superoxide radical(SRSC)
4.2.5 Amino acid evaluation
4.2.6 Surface hydrophobicity(S0)
4.2.7 Statistical analysis
4.3 Results and discussion
4.3.1 Techno-functional attributes of HILPs and HILPHs
4.3.1.1 Solubility
4.3.1.2 Emulsifying activity and stability index(EAI,and ESI)
4.3.1.3 Foaming property
4.3.2 Antioxidative activity of HILPs and HILPHs
4.3.2.1 ABTSRSC
4.3.2.2 Scavenging activity-superoxide radical(SRSC)
4.3.2.3 Reducing power(FRP)
4.3.3 Amino acid evaluation
4.3.4 Surface hydrophobicity(S0)
4.4 Conclusion
4.5 References
CHAPTER 5 CHARACTERIZATION OF EDIBLE SOLDIER FLY PROTEIN AND HYDROLYSATE ALTERED BY MULTIPLE-FREQUENCY ULTRASOUND:STRUCTURAL,PHYSICAL,AND FUNCTIONAL ATTRIBUTES
5.1 Introduction
5.2 Materials and methods
5.2.1 Materials
5.2.2 Methods
5.2.2.1 HILP extraction
5.2.2.2 HILP treatments
5.2.2.3 HIL protein hydrolysate(HILPH)
5.2.2.4 Particle size(PS)examination
5.2.2.5 Turbidity
5.2.2.6 Colour characteristics
5.2.2.7 Dispersibility
5.2.2.8 Oil absorption efficacy(OAe)
5.2.2.9 Water absorption efficiency(WAe)
5.2.2.10 Zeta potential(ZP)estimation
5.2.2.11 UV spectra analysis
5.2.2.12 Fourier transform infrared(FTIR)spectra analyses
5.2.2.13 Sodium dodecyl sulphate(SDS)-polyacrylamide gel electrophoresis(PAGE)
5.2.2.14 Molecular weight(MW)distribution of HILPHs
5.2.2.15 Sulfhydryl(SH)value
5.2.2.16 Statistical analysis
5.3 Result and discussion
5.3.1 Particle size(Ps)determination
5.3.2 Turbidity
5.3.3 Colour characteristics
5.3.4 Dispersibility
5.3.5 Oil absorption efficacy(OAe)
5.3.6 Water absorption efficacy(WAe)
5.3.7 Surface charge(Zeta)
5.3.8 UV spectra analysis
5.3.9 FT-IR spectra–prediction of secondary structure of HILPs and HILPHs
5.3.10 Molecular weight(Mw)distribution-SDS-PAGE
5.3.11 M_W distribution of HILPHs
5.3.12 SH content
5.3.13 Correlational analysis
5.4 Conclusion
5.5 References
CHAPTER 6 EFFECT OF SONICATION PRETREATMENT PARAMETERS AND THEIR OPTIMIZATION ON THE ANTIOXIDANT ACTIVITY OF HERMITIA ILLUCENS LARVAE MEAL PROTEIN HYDROLYSATES
6.1 Introduction
6.2 Material and Methods
6.2.1 Sample,and chemicals
6.2.2 H.illucens larvae meal protein(HILMP)hydrolysates
6.2.3 Experimental design
6.2.4 Determination of ferrous ion(Fe~(2+))chelating activity(ICA)
6.2.5 Determination of1,1-DPPH free-radical scavenging capacity(DPPHRSA)
6.2.6 Determination of scavenging activity-Hydroxyl radical(HRSA)
6.2.7 Cu~(2+)chelation assay(CCA)
6.2.8 Amino acid evaluation
6.2.9 Intrinsic fluorescence(Fi)examination
6.2.10 Microstructure analysis
6.2.11 Statistical analysis
6.3 Results and Discussion
6.3.1 Effect of sonication parameters on ICA of HILMP hydrolysates
6.3.2 Effect of sonication parameters on DPPHRSA of HILMP hydrolysates
6.3.3 Effect of sonication parameters on HRSA of HILMP hydrolysate
6.3.4 Effect of sonication parameters on CCA of HILMP hydrolysate
6.3.5 Model verification and validation
6.3.6 Comparison of sonication and conventional pretreatments on ICA,DPPHRSA,HRSA and CCA
6.3.7 Amino acid scores
6.3.8 Intrinsic fluorescence(Fi)of HIL protein hydrolysates
6.3.9 Microstructure
6.4 Conclusion
6.5 References
CHAPTER 7 IMPACT OF LARVAE DEHYDRATION TECHNIQUES ON OXIDATION-INHIBITION EFFICACY,FUNCTIONAL,PHYSICAL,AND STRUCTURAL ATTRIBUTES OF PROTEIN PREPARATIONS FROM FIT-TO-EAT INSECT
7.1 Introduction
7.2 MATERIALS AND METHODS
7.2.1 Materials
7.2.2 Methods
7.2.2.1 Drying protocols,defatting,and protein extraction
7.2.2.2 Superoxide radical scavenging efficiency-(SRSE)
7.2.2.3 ABTS radical scavenging efficiency(ABTSRSE)
7.2.2.4 Scavenging activity–Hydroxyl radical(SAHR)
7.2.2.5 Ferric-reducing effect(FRE)
7.2.2.6 Cupric-ion(Cu~(2+))chelating potential(CCP)
7.2.2.7 Amino acid evaluation
7.2.2.8 Solubility
7.2.2.9 Browning index(BI)
7.2.2.10 Water absorption(WA)capacity
7.2.2.11 Oil absorption(OA)capacity
7.2.2.12 Particle size(PS)evaluation
7.2.2.13 Intrinsic fluorescence evaluation(IFE)
7.2.2.14 Fourier transmute infrared(FTIR)spectra analyses
7.2.2.15 Far-ultra violet(FUV)circular dichroism(CD)analyses
7.2.2.16 Statistical analysis
7.3 Results and Discussion
7.3.1 Superoxide radical scavenging efficiency-(SRSE)
7.3.2 Scavenging efficiency-ABTS radical(ABTSRSE)
7.3.3 Scavenging activity-Hydroxyl radical(SAHR)
7.3.4 Ferric-reducing effect(FRE)
7.3.5 Cupric-ion(Cu~(2+))chelating potential(CCP)
7.3.6 Solubility
7.3.7 Browning intensity(BI)
7.3.8 Water absorption(WA)capacity
7.3.9 Oil absorption(OA)capacity
7.3.10 Particle size
7.3.11 Amino acid(subunit)scores
7.3.12 Intrinsic fluorescence spectra(IFS)
7.3.13 FTIR Spectra
7.3.14 Circular Dichroism(CD)
7.4 Conclusion
7.5 References
CHAPTER 8 CONCLUSIONS,FUTURE WORK,AND NOVELTY
8.1 General Conclusions
8.2 Future work
8.3 Novelty
Publications
Other Publications
本文編號(hào):3596177
【文章來源】:江蘇大學(xué)江蘇省
【文章頁(yè)數(shù)】:227 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
DEDICATION
ACKNOWLEDGEMENT
Abstract
摘要
List of abbreviations
CHAPTER 1 INTRODUCTION
1.1 General background
1.2 H.illucens
1.2.1 Origin/General Description
1.2.2 Classification
1.2.3 Nutritional value/facts of H.illucens larvae
1.3 Processing of insects prior to protein extraction
1.4 Extraction of insect protein
1.5 Alkali-aided protein extraction and principle/mechanism of operation
1.6 Functional properties of insect protein/protein preparations
1.7 Oxidation impact invivo,and action of antioxidants from chemical/natural source
1.8 Antioxidant activity/bioactivity of insect protein
1.9 Hydrolyisis of proteins/protein preparations
1.10 Use of Novel technology(Ultrasound)in processing
1.11 Specific objectives
1.12 Organization of dissertation
1.13 References
CHAPTER 2 EDIBLE INSECT PROTEIN FOR FOOD APPLICATIONS:EXTRACTION,COMPOSITION,AND FUNCTIONAL PROPERTIES
2.1 Introduction
2.2 Materials and Methods
2.2.1 HIL,chemicals and reagents
2.2.2 Larvae meal preparation
2.2.3 Proximate analysis
2.2.4 Protein extraction,yield,and single factor experiment
2.2.5 Optimization of the extraction conditions
2.2.6 Amino acid composition,physichochemical,functional properties,and fluorescence of HIL protein isolates
2.2.6.1 Amino acid analysis
2.2.6.2 Proximate analysis
2.2.6.3 Bulk density
2.2.6.4 Colour analysis
2.2.6.5 Water/oil absorption capacities
2.2.6.6 Nitrogen solubility
2.2.6.7 Foaming properties
2.2.6.8 Intrinsic fluorescence(IF)analysis
2.2.7 Effect of Ultrasonication treatment on extraction yield
2.2.7.1 Screening of MFCU frequency mode
2.2.7.2 Influence of ultrasonication time
2.2.7.3 Influence of ultrasonic power density
2.2.8 Statistical analysis
2.3 Results and Discussion
2.3.1 Proximate composition of defatted and un-defatted HIL meal
2.3.2 Effect of time,alkaline solution to sample ratio,and temperature on protein extraction yield(single factor investigation)
2.3.3 Model fitting for extraction of protein from HIL meal
2.3.4 Effect of extraction parameters on yield of HIL protein
2.3.5 Optimal conditions and validation of model for extraction of protein from HIL
2.3.6 Amino acid component and physicochemical characteristics of HIL protein isolate
2.3.6.1 Amino acid component
2.3.6.2 Protein contents of extracts
2.3.6.3 Bulk density
2.3.6.4 Colour analysis
2.3.7 Functional properties of HIL protein isolate
2.3.7.1 Water/oil absorption capacities
2.3.7.2 Nitrogen solubility
2.3.7.3 Foaming properties
2.3.7.4 Intrinsic fluorescence(IF)of HIL protein isolates
2.3.8 Influence of Ultrasonication treatment on protein extraction yield and content
2.3.8.1 MFCU frequency mode screening
2.3.8.2 Effect of sonication time
2.3.8.3 Effect of power density
2.3.8.4 Verification test
2.3.8.5 Protein content
2.4 Conclusion
2.5 References
CHAPTER 3 SONOCHEMICAL ACTION AND REACTION OF EDIBLE INSECT PROTEIN:INFLUENCE ON ENZYMOLYSIS REACTION-KINETICS,FREE-GIBBS,STRUCTURE AND ANTIOXIDANT CAPACITY
3.1 Introduction
3.2 Materials and Methods
3.2.1 Materials
3.2.2 Multi frequency control ultrasound(MFCU)pretreatment of HILMP
3.2.3 Enzyme hydrolysis of HILMP
3.2.4 Measure of hydrolysis
3.2.5 Estimation of hydrolyzed protein concentration Hpc
3.2.6 Enzymolysis reaction-rate(k)
3.2.7 Thermodynamics of HILMP enzymolysis
3.2.8 Hydrolysate peptide concentration
3.2.9 Preparation of HILMP isolates
3.2.10 Ultraviolet-visible spectra(UV-VS)analysis
3.2.11 Intrinsic fluorescence analysis(IFA)
3.2.12 Micrographic imaging analysis
3.2.13 Scavenging activity-Hydroxyl radical(SAHR)analyses
3.2.14 Statistical analysis
3.3 Results and Discussion
3.3.1 Influence of sonication and control pretreatments on HILMP enzymolysis
3.3.2 Effects of sonication pretreatment and control enzymolysis on rate-reaction constant k
3.3.3 Effects of sonication pretreatment and control enzymolysis on thermodynamic limits
3.3.4 Ultraviolet-visible spectra(UV-VS)analysis
3.3.5 Intrinsic fluorescence analysis(IFA)
3.3.6 Micrographic imaging analysis(MIA)
3.3.7 Scavenging activity(SAHR)of HILMP hydrolysate samples
3.4 Conclusions
3.5 References
CHAPTER 4 TECHNO-FUNCTIONAL ATTRIBUTE AND ANTIOXIDATIVE CAPACITY OF EDIBLE INSECT PROTEIN PREPARATIONS AND HYDROLYSATES THEREOF:EFFECT OF MULTIPLE MODE SONOCHEMICAL ACTION
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Methods
4.2.2.1 H.illucens larvae protein isolate(HILP)
4.2.2.2 HILP treatments
4.2.2.3 H.illucens larvae protein hydrolysates(HILPHs)
4.2.3 Determination of techno-functional attributes
4.2.3.1 Solubility
4.2.3.2 Emulsion properties(EP)
4.2.3.3 Foaming properties
4.2.4 Quantification of antioxidative activity
4.2.4.1 Scavenging capacity-ABTS radical(ABTSRSC)
4.2.4.2 Ferric-reducing power (FRP)
4.2.4.3 Scavenging activity-superoxide radical(SRSC)
4.2.5 Amino acid evaluation
4.2.6 Surface hydrophobicity(S0)
4.2.7 Statistical analysis
4.3 Results and discussion
4.3.1 Techno-functional attributes of HILPs and HILPHs
4.3.1.1 Solubility
4.3.1.2 Emulsifying activity and stability index(EAI,and ESI)
4.3.1.3 Foaming property
4.3.2 Antioxidative activity of HILPs and HILPHs
4.3.2.1 ABTSRSC
4.3.2.2 Scavenging activity-superoxide radical(SRSC)
4.3.2.3 Reducing power(FRP)
4.3.3 Amino acid evaluation
4.3.4 Surface hydrophobicity(S0)
4.4 Conclusion
4.5 References
CHAPTER 5 CHARACTERIZATION OF EDIBLE SOLDIER FLY PROTEIN AND HYDROLYSATE ALTERED BY MULTIPLE-FREQUENCY ULTRASOUND:STRUCTURAL,PHYSICAL,AND FUNCTIONAL ATTRIBUTES
5.1 Introduction
5.2 Materials and methods
5.2.1 Materials
5.2.2 Methods
5.2.2.1 HILP extraction
5.2.2.2 HILP treatments
5.2.2.3 HIL protein hydrolysate(HILPH)
5.2.2.4 Particle size(PS)examination
5.2.2.5 Turbidity
5.2.2.6 Colour characteristics
5.2.2.7 Dispersibility
5.2.2.8 Oil absorption efficacy(OAe)
5.2.2.9 Water absorption efficiency(WAe)
5.2.2.10 Zeta potential(ZP)estimation
5.2.2.11 UV spectra analysis
5.2.2.12 Fourier transform infrared(FTIR)spectra analyses
5.2.2.13 Sodium dodecyl sulphate(SDS)-polyacrylamide gel electrophoresis(PAGE)
5.2.2.14 Molecular weight(MW)distribution of HILPHs
5.2.2.15 Sulfhydryl(SH)value
5.2.2.16 Statistical analysis
5.3 Result and discussion
5.3.1 Particle size(Ps)determination
5.3.2 Turbidity
5.3.3 Colour characteristics
5.3.4 Dispersibility
5.3.5 Oil absorption efficacy(OAe)
5.3.6 Water absorption efficacy(WAe)
5.3.7 Surface charge(Zeta)
5.3.8 UV spectra analysis
5.3.9 FT-IR spectra–prediction of secondary structure of HILPs and HILPHs
5.3.10 Molecular weight(Mw)distribution-SDS-PAGE
5.3.11 M_W distribution of HILPHs
5.3.12 SH content
5.3.13 Correlational analysis
5.4 Conclusion
5.5 References
CHAPTER 6 EFFECT OF SONICATION PRETREATMENT PARAMETERS AND THEIR OPTIMIZATION ON THE ANTIOXIDANT ACTIVITY OF HERMITIA ILLUCENS LARVAE MEAL PROTEIN HYDROLYSATES
6.1 Introduction
6.2 Material and Methods
6.2.1 Sample,and chemicals
6.2.2 H.illucens larvae meal protein(HILMP)hydrolysates
6.2.3 Experimental design
6.2.4 Determination of ferrous ion(Fe~(2+))chelating activity(ICA)
6.2.5 Determination of1,1-DPPH free-radical scavenging capacity(DPPHRSA)
6.2.6 Determination of scavenging activity-Hydroxyl radical(HRSA)
6.2.7 Cu~(2+)chelation assay(CCA)
6.2.8 Amino acid evaluation
6.2.9 Intrinsic fluorescence(Fi)examination
6.2.10 Microstructure analysis
6.2.11 Statistical analysis
6.3 Results and Discussion
6.3.1 Effect of sonication parameters on ICA of HILMP hydrolysates
6.3.2 Effect of sonication parameters on DPPHRSA of HILMP hydrolysates
6.3.3 Effect of sonication parameters on HRSA of HILMP hydrolysate
6.3.4 Effect of sonication parameters on CCA of HILMP hydrolysate
6.3.5 Model verification and validation
6.3.6 Comparison of sonication and conventional pretreatments on ICA,DPPHRSA,HRSA and CCA
6.3.7 Amino acid scores
6.3.8 Intrinsic fluorescence(Fi)of HIL protein hydrolysates
6.3.9 Microstructure
6.4 Conclusion
6.5 References
CHAPTER 7 IMPACT OF LARVAE DEHYDRATION TECHNIQUES ON OXIDATION-INHIBITION EFFICACY,FUNCTIONAL,PHYSICAL,AND STRUCTURAL ATTRIBUTES OF PROTEIN PREPARATIONS FROM FIT-TO-EAT INSECT
7.1 Introduction
7.2 MATERIALS AND METHODS
7.2.1 Materials
7.2.2 Methods
7.2.2.1 Drying protocols,defatting,and protein extraction
7.2.2.2 Superoxide radical scavenging efficiency-(SRSE)
7.2.2.3 ABTS radical scavenging efficiency(ABTSRSE)
7.2.2.4 Scavenging activity–Hydroxyl radical(SAHR)
7.2.2.5 Ferric-reducing effect(FRE)
7.2.2.6 Cupric-ion(Cu~(2+))chelating potential(CCP)
7.2.2.7 Amino acid evaluation
7.2.2.8 Solubility
7.2.2.9 Browning index(BI)
7.2.2.10 Water absorption(WA)capacity
7.2.2.11 Oil absorption(OA)capacity
7.2.2.12 Particle size(PS)evaluation
7.2.2.13 Intrinsic fluorescence evaluation(IFE)
7.2.2.14 Fourier transmute infrared(FTIR)spectra analyses
7.2.2.15 Far-ultra violet(FUV)circular dichroism(CD)analyses
7.2.2.16 Statistical analysis
7.3 Results and Discussion
7.3.1 Superoxide radical scavenging efficiency-(SRSE)
7.3.2 Scavenging efficiency-ABTS radical(ABTSRSE)
7.3.3 Scavenging activity-Hydroxyl radical(SAHR)
7.3.4 Ferric-reducing effect(FRE)
7.3.5 Cupric-ion(Cu~(2+))chelating potential(CCP)
7.3.6 Solubility
7.3.7 Browning intensity(BI)
7.3.8 Water absorption(WA)capacity
7.3.9 Oil absorption(OA)capacity
7.3.10 Particle size
7.3.11 Amino acid(subunit)scores
7.3.12 Intrinsic fluorescence spectra(IFS)
7.3.13 FTIR Spectra
7.3.14 Circular Dichroism(CD)
7.4 Conclusion
7.5 References
CHAPTER 8 CONCLUSIONS,FUTURE WORK,AND NOVELTY
8.1 General Conclusions
8.2 Future work
8.3 Novelty
Publications
Other Publications
本文編號(hào):3596177
本文鏈接:http://sikaile.net/projectlw/qgylw/3596177.html
最近更新
教材專著