高壓均質(zhì)對(duì)胡蘿卜—蘋果—桃復(fù)合汁穩(wěn)定性及生物活性物質(zhì)生物利用度的影響
發(fā)布時(shí)間:2021-07-06 04:22
本文研究了高壓均質(zhì)(High Pressure Homogenization,HPH)與果汁比例對(duì)胡蘿卜、蘋果和桃復(fù)合汁的穩(wěn)定性、流動(dòng)性和功能組分(酚類、類胡蘿卜素)生物利用度的影響。主要研究結(jié)果有以下幾個(gè)方面:針對(duì)品評(píng)試驗(yàn)篩選出的胡蘿卜、蘋果和桃(質(zhì)量比30:50:20)復(fù)合汁,研究了HPH對(duì)果汁微生物含量、渾濁穩(wěn)定性及流變特性的影響。HPH處理壓力為25 MPa、100 MPa、140 MPa和180 MPa,均質(zhì)次數(shù)為1次和2次,入料溫度為25℃和40℃。Herschel Bulkey模型可較好地?cái)M合粘度的相關(guān)數(shù)據(jù)。與對(duì)照組(未均質(zhì),NH)樣品相比,在140 MPa和25℃條件下,經(jīng)過1次HPH的流動(dòng)性指數(shù)提高了3倍,入料溫度的升高也提高了流動(dòng)特性指數(shù)。此外,盡管pH值和顏色略有變化,但HPH處理對(duì)總可溶性固形物含量沒有影響。與對(duì)照組相比,當(dāng)HPH為140 MPa時(shí),總菌落數(shù)和霉菌酵母菌數(shù)分別減少了4個(gè)對(duì)數(shù)和3個(gè)對(duì)數(shù)。因此,在140 MPa的HPH下,可以有效地提高混濁果汁的云穩(wěn)定性,改善流動(dòng)性,減少微生物。以胡蘿卜漿、蘋果清汁和桃汁為原料,按50:30:20、40:40:20、...
【文章來源】:中國(guó)農(nóng)業(yè)科學(xué)院北京市
【文章頁(yè)數(shù)】:151 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
ABBRIVATIONS
CHAPTER 1 INTRODUCTION
1.1 FRUIT AND VEGETABLE JUICES
1.1.1 Introdcution and classification
1.1.2 Not from concentrate mixed juice
1.1.3 Raw materials for mixed juice production
1.1.3.1 Apples
1.1.3.2 Peaches
1.1.3.3 Carrot
1.2 NUTRACEUTICALS IN MIXED JUICE
1.2.1 Bioactive compounds and antioxidant activities
1.2.1.1 Polyphenolic compounds
1.2.1.2 Carotenoids
1.2.1.3 Antioxidant activity
1.2.2 Dietary fibers
1.2.2.1 Pectin
1.2.2.1.1 Pectin health benefits
1.2.2.1.2 Pectin structural characteristics
1.2.2.1.3 Pectin characteristics and functional properties
1.2.2.1.4 Pectin and polyphenol interactions
1.3 NFC JUICE PROCESSING TECHNOLOGIES
1.3.1 Importance of juice processing technologies
1.3.2 Thermal technologies for juice production
1.3.3 Non-thermal technologies for juice production
1.3.3.1 High pressure homogenization
1.3.3.1.1 Mechanisms of action of high pressure homogenization
1.3.3.1.2 High pressure homogenization for fruit juice processing
1.3.3.1.3 Impact of high pressure homogenization on bioactive compounds
1.3.4 Impact of processing on pectin
1.3.5 Pectin depolymerization and demethoxylation
1.3.5.1 Enxymatic demethoxylation
1.3.5.2 Non-enzymetic demethoxylation
1.3.5.3 Enzymetic depolymerization
1.3.5.4 Non-enzymatic depolymerization
1.3.6 Inactivation of enzyme activity
1.3.7 Effect of high pressure homogenization on depolymerization
1.4 BIOACCESSIBILITY AND BIOAVAILABILITY OF BIOACTIVE COMPOUNDS FROM FOOD
1.4.1 Digestion
1.4.2 Bioaccessibility and bioavailability
1.4.3 Evaluation of bioaccessibility
1.4.3.1 In vivo gastrointestinal digestion
1.4.3.2 In vitro gastrointestinal digestion
1.4.4 Bioaccessibility of bioactive compounds
1.4.4.1 Digestion, absorption and metabolism of phenolic compounds
1.4.4.2 Digestion, absorption and metabolism of carotenoid compounds
1.4.5 Impact of food matrix on bioaccessibility of bioactive compounds
1.4.5.1 Impact of pectin on bioaccessibility of polyphenols
1.4.5.2 Impact of pectin on bioaccessibility of carotenoids
1.4.5.2.1 Impact of degree of methylesterification
1.4.5.2.2 Impact of molecular weight
1.4.6 Impact of processing of bioaccessibility of bioactive compounds
1.4.6.1 Impact of proceesing on bioaccessibility of polyphenols
1.4.6.2 Impact of proceesing on bioaccessibility of carotenoids
1.4.6.3 Impact of high pressure homogenization on bioaassessibility of bioactivecompounds
1.5 OBJECTIVES
CHAPTER 2 EFFECT OF HIGH PRESSURE HOMOGENIZATION ON MIXED JUICE STABILITY, RHEOLOGY, PHYSICAL PROPERTIES ANDMICROORGANISM REDUCTION
2.1 INTRODUCTION
2.2 MATERIALS
2.3 METHODS
2.3.1 Cloudy mixed juice preparation
2.3.2 Cloudy mixed juice treated by high pressure homogenization
2.3.3 Particle size distribution
2.3.4 Microstrcture analysis
2.3.5 Relative turbidity determination
2.3.6 Determination of viscosity curves and flow behavior properties
2.3.7 Total soluble solids and p H analysis
2.3.8 Instrumental color analysis
2.3.9 Microorganism analysis
2.3.10 Statistical analysis
2.4 RESULTS AND DISCUSSION
2.4.1 Particle size distribution
2.4.2 Microstructre
2.4.3 Relative turbidity
2.4.4 Viscosity and flow behavior properties
2.4.5 Total soluble solids content and p H
2.4.6 Instrumental color
2.4.7 Reduction of natural microorganisms
2.5 CONCLUSION
CHAPTER 3 EFFECT OF JUICE RATIO AND HIGH PREESURE HOMOGENIZATION ON WATER-SOLUBLE PECTIN CHARACTERISTICS, FUNCTIONAL PROPERTIES AND BIOACTIVE COMPOUNDS IN MIXEDJUICES
3.1 INTRODUCTION
3.2 MATERIALS
3.3 METHODS
3.3.1 Mixed juice preparation and treated by high pressure homogenization
3.3.2 Physicochemical characterization
3.3.2.1 Instrumental color
3.3.2.2 Total soluble solids, titratable acidity and p H
3.3.2.3 Dry matter content
3.3.2.4 Suspended solids content
3.3.3 Particle size distribution
3.3.4 Pectin analysis
3.3.4.1 Isolation of alcohol-insoluble residue and water-soluble fraction of pectin
3.3.4.2 Determination of galacturonic acid content
3.3.4.3 Determination of degree of methylesterification
3.3.4.4 Neutral sugar analysis
3.3.5 Relative turbidity determination
3.3.6 Zeta potential analysis
3.3.7 Rheology
3.3.8 Sensory analysis
3.3.9 Determination of carotenoid content
3.3.10 Extraction of polyphenols
3.3.11 Analysis of total polyphenol content
3.3.12 Analysis of antioxidant activity
3.3.12.1 FRAP method
3.3.12.2 DPPH method
3.3.13 Statistical analysis
3.4 RESULTS AND DISCUSSION
3.4.1 Physicochemical characteristics
3.4.1.1 Instrumental color
3.4.1.2 Total soluble solids, total tritratable acidity, p H and TSS/TAA ratio
3.4.1.3 Dry matter content
3.4.1.4 Suspended solids
3.4.2 Particle size distribution and particle diameters
3.4.3 Water-soluble pectin characterization
3.4.3.1 Water-soluble pectin and degree of methylesterification
3.4.3.2 Neutral sugar contents and ratios
3.4.4 Zeta potential analysis
3.4.5 Cloudy stability of high pressure homogenized mixed juice
3.4.6 Juice rheological properties
3.4.6.1 The frequency sweep curves
3.4.6.2 The tan δ
3.4.7 Sensory test results of homogenized mixed juices and relationship withinstrumental indicatos
3.4.8 The carotenoid and polyphenol contents, and antioxidant activity
3.4.9 Relationships of functional properties with physicochemical, particle andwater-soluble pectin characteristics
3.4.9.1 Relationship of relative turbidity with D[3,2] and TSS content
3.4.9.2 Relationship of G’ with SS content and D[3,2]
3.4.10 Relationship of polyphenol content with water-soluble pectin characteristics inhomogenized mixed juice samples
3.4.11 Relationship of antioxidant activity with contents of polyphenols andwater-soluble pectin in homogenized mixed juice samples
3.5 CONCLUSION
CHAPTER 4 JUICE RELATED WATER-SOLUBLE PECTIN CHARACTERISTICS AND BIOACCESSIBILITY OF BIOACTIVE COMPOUNDS IN OIL AND EMULSION INCORPORATED MIXED JUICEPROCESSED BY HIGH PRESSURE HOMOGENIZATION
4.1 INTRODUCTION
4.2 MATERIALS
4.3 METHODS
4.3.1 Mixed juice preparation
4.3.2 Mixed juice treated by high pressure homogenization
4.3.3 In vitro digestion
4.3.3.1 Incorporation of oil and emulsion
4.3.3.2 Simulated mouth, stomach and intestinal digestion
4.3.4 Particle size distribution and particle diameters
4.3.5 Zeta potential analysis
4.3.6 Confocal microscopy analysis
4.3.7 Pectin analysis
4.3.7.1 Isolation of alcohol-insoluble residue
4.3.7.2 Fractionation of water-soluble pectin
4.3.7.3 Determination of galactunonic acid content
4.3.7.4 Determination of degree of methylesterification
4.3.7.5 Neutral sugar analysis
4.3.7.6 Determination of molecular weight
4.3.8 Determination of viscosity
4.3.9 Determination of total carotenoid content
4.3.10 Extraction of polyphenols and determination of total polyphenol content
4.3.11 Bioaccessibility of carotenoids and polyphenols
4.3.12 Statistical analysis
4.4 RESULTS AND DISCUSSION
4.4.1 Particle size distribution and particle diameters
4.4.2 Zeta potential
4.4.3 Microstructure and appearance of oil and emulsion particles
4.4.4 Water-soluble pectin characteristics of high pressure homogenized mixed juicesand viscosity of small intestinal digesta
4.4.5 Total carotenoid bioaccessibility
4.4.6 Total polyphenol bioaccessibility
4.4.7 Relationship of total carotenoid bioaccessibility with particle properties andwater-soluble pectin characteristics
4.4.7.1 Relationship between total carotenoid bioaccessibility and mean particlediameters (D[4,3] and D[3,2])
4.4.7.2 Relationship between total carotenoid bioaccessibility and zeta potential
4.4.7.3 Relationship between total carotenoid bioaccessibility and water-soluble pectincharacteristics
4.4.8 Relationship between total polyphenol bioaccessibility and water-soluble pectinproperties
4.5 CONCLUSION
CHAPTER 5 IMPACT OF HIGH PRESSURE HOMOGENIZATION ON WATER-SOLUBLE PECTIN CHARACTERISTICS AND BIOACCESSIBILITYOF BIOACTIVE COMPOUNDS OF MIXED JUICE
5.1 INTRODUCTION
5.2 MATERIALS
5.3 METHODS
5.3.1 Mixed juice preparation and treatment by high pressure homogenization
5.3.2 Pectin analysis in high pressure homogenized mixed juice
5.3.2.1 Isolation of alcohol-insoluble residue and fractionation of water-soluble pectin
5.3.2.2 Determination of molecular weight
5.3.2.3 Determination of galacturonic acid content and degree of methylesterification
5.3.2.4 Neutral sugar analysis
5.3.3 Retention and bioaccessibility of carotenoids and polyphenols
5.3.3.1 In vitro digestion
5.3.3.1.1 Sample preparation
5.3.3.1.2 Simulated mouth, stomach and intestinal digestion
5.3.3.2 Description of digesta
5.3.3.2.1 Particle size distribution and particle diameters
5.3.3.2.2 Zeta potential analysis
5.3.3.2.3 Confocal microscopy analysis
5.3.3.2.4 Determination of total carotenoid content
5.3.3.2.5 Extraction of polyphenols and analysis of total polyphenol content
5.3.3.2.6 Bioaccessibility of carotenoids and polyphenols
5.3.4 Statistical analysis
5.4 RESULTS AND DISCUSSION
5.4.1 The water-soluble pectin characteristics of mixed juice
5.4.1.1 Molecular weight
5.4.1.2 Galacturonic acid content, degree of methylesterification, chain linearity andbranching
5.4.2 Analysis of small intestinal digesta
5.4.2.1 Particle size distribution and mean particle diameters
5.4.2.2 Zeta potential
5.4.2.3 Microstructure
5.4.3 Total carotenoid content and total carotenoid bioaccessibility
5.4.4 Total polyphenol bioaccessibility
5.4.5 Relationship of total carotenoid bioaccessibility with water-soluble pectincharacteristics
5.5 CONCLUSION
SUMMARY
1 CONCLUSION
2 RECOMMENDATIONS
BIBLIOGRAPHY
致謝 (ACKNOWLEDGEMENT)
作者簡(jiǎn)歷 (RESUME)
本文編號(hào):3267514
【文章來源】:中國(guó)農(nóng)業(yè)科學(xué)院北京市
【文章頁(yè)數(shù)】:151 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
ABSTRACT
ABBRIVATIONS
CHAPTER 1 INTRODUCTION
1.1 FRUIT AND VEGETABLE JUICES
1.1.1 Introdcution and classification
1.1.2 Not from concentrate mixed juice
1.1.3 Raw materials for mixed juice production
1.1.3.1 Apples
1.1.3.2 Peaches
1.1.3.3 Carrot
1.2 NUTRACEUTICALS IN MIXED JUICE
1.2.1 Bioactive compounds and antioxidant activities
1.2.1.1 Polyphenolic compounds
1.2.1.2 Carotenoids
1.2.1.3 Antioxidant activity
1.2.2 Dietary fibers
1.2.2.1 Pectin
1.2.2.1.1 Pectin health benefits
1.2.2.1.2 Pectin structural characteristics
1.2.2.1.3 Pectin characteristics and functional properties
1.2.2.1.4 Pectin and polyphenol interactions
1.3 NFC JUICE PROCESSING TECHNOLOGIES
1.3.1 Importance of juice processing technologies
1.3.2 Thermal technologies for juice production
1.3.3 Non-thermal technologies for juice production
1.3.3.1 High pressure homogenization
1.3.3.1.1 Mechanisms of action of high pressure homogenization
1.3.3.1.2 High pressure homogenization for fruit juice processing
1.3.3.1.3 Impact of high pressure homogenization on bioactive compounds
1.3.4 Impact of processing on pectin
1.3.5 Pectin depolymerization and demethoxylation
1.3.5.1 Enxymatic demethoxylation
1.3.5.2 Non-enzymetic demethoxylation
1.3.5.3 Enzymetic depolymerization
1.3.5.4 Non-enzymatic depolymerization
1.3.6 Inactivation of enzyme activity
1.3.7 Effect of high pressure homogenization on depolymerization
1.4 BIOACCESSIBILITY AND BIOAVAILABILITY OF BIOACTIVE COMPOUNDS FROM FOOD
1.4.1 Digestion
1.4.2 Bioaccessibility and bioavailability
1.4.3 Evaluation of bioaccessibility
1.4.3.1 In vivo gastrointestinal digestion
1.4.3.2 In vitro gastrointestinal digestion
1.4.4 Bioaccessibility of bioactive compounds
1.4.4.1 Digestion, absorption and metabolism of phenolic compounds
1.4.4.2 Digestion, absorption and metabolism of carotenoid compounds
1.4.5 Impact of food matrix on bioaccessibility of bioactive compounds
1.4.5.1 Impact of pectin on bioaccessibility of polyphenols
1.4.5.2 Impact of pectin on bioaccessibility of carotenoids
1.4.5.2.1 Impact of degree of methylesterification
1.4.5.2.2 Impact of molecular weight
1.4.6 Impact of processing of bioaccessibility of bioactive compounds
1.4.6.1 Impact of proceesing on bioaccessibility of polyphenols
1.4.6.2 Impact of proceesing on bioaccessibility of carotenoids
1.4.6.3 Impact of high pressure homogenization on bioaassessibility of bioactivecompounds
1.5 OBJECTIVES
CHAPTER 2 EFFECT OF HIGH PRESSURE HOMOGENIZATION ON MIXED JUICE STABILITY, RHEOLOGY, PHYSICAL PROPERTIES ANDMICROORGANISM REDUCTION
2.1 INTRODUCTION
2.2 MATERIALS
2.3 METHODS
2.3.1 Cloudy mixed juice preparation
2.3.2 Cloudy mixed juice treated by high pressure homogenization
2.3.3 Particle size distribution
2.3.4 Microstrcture analysis
2.3.5 Relative turbidity determination
2.3.6 Determination of viscosity curves and flow behavior properties
2.3.7 Total soluble solids and p H analysis
2.3.8 Instrumental color analysis
2.3.9 Microorganism analysis
2.3.10 Statistical analysis
2.4 RESULTS AND DISCUSSION
2.4.1 Particle size distribution
2.4.2 Microstructre
2.4.3 Relative turbidity
2.4.4 Viscosity and flow behavior properties
2.4.5 Total soluble solids content and p H
2.4.6 Instrumental color
2.4.7 Reduction of natural microorganisms
2.5 CONCLUSION
CHAPTER 3 EFFECT OF JUICE RATIO AND HIGH PREESURE HOMOGENIZATION ON WATER-SOLUBLE PECTIN CHARACTERISTICS, FUNCTIONAL PROPERTIES AND BIOACTIVE COMPOUNDS IN MIXEDJUICES
3.1 INTRODUCTION
3.2 MATERIALS
3.3 METHODS
3.3.1 Mixed juice preparation and treated by high pressure homogenization
3.3.2 Physicochemical characterization
3.3.2.1 Instrumental color
3.3.2.2 Total soluble solids, titratable acidity and p H
3.3.2.3 Dry matter content
3.3.2.4 Suspended solids content
3.3.3 Particle size distribution
3.3.4 Pectin analysis
3.3.4.1 Isolation of alcohol-insoluble residue and water-soluble fraction of pectin
3.3.4.2 Determination of galacturonic acid content
3.3.4.3 Determination of degree of methylesterification
3.3.4.4 Neutral sugar analysis
3.3.5 Relative turbidity determination
3.3.6 Zeta potential analysis
3.3.7 Rheology
3.3.8 Sensory analysis
3.3.9 Determination of carotenoid content
3.3.10 Extraction of polyphenols
3.3.11 Analysis of total polyphenol content
3.3.12 Analysis of antioxidant activity
3.3.12.1 FRAP method
3.3.12.2 DPPH method
3.3.13 Statistical analysis
3.4 RESULTS AND DISCUSSION
3.4.1 Physicochemical characteristics
3.4.1.1 Instrumental color
3.4.1.2 Total soluble solids, total tritratable acidity, p H and TSS/TAA ratio
3.4.1.3 Dry matter content
3.4.1.4 Suspended solids
3.4.2 Particle size distribution and particle diameters
3.4.3 Water-soluble pectin characterization
3.4.3.1 Water-soluble pectin and degree of methylesterification
3.4.3.2 Neutral sugar contents and ratios
3.4.4 Zeta potential analysis
3.4.5 Cloudy stability of high pressure homogenized mixed juice
3.4.6 Juice rheological properties
3.4.6.1 The frequency sweep curves
3.4.6.2 The tan δ
3.4.7 Sensory test results of homogenized mixed juices and relationship withinstrumental indicatos
3.4.8 The carotenoid and polyphenol contents, and antioxidant activity
3.4.9 Relationships of functional properties with physicochemical, particle andwater-soluble pectin characteristics
3.4.9.1 Relationship of relative turbidity with D[3,2] and TSS content
3.4.9.2 Relationship of G’ with SS content and D[3,2]
3.4.10 Relationship of polyphenol content with water-soluble pectin characteristics inhomogenized mixed juice samples
3.4.11 Relationship of antioxidant activity with contents of polyphenols andwater-soluble pectin in homogenized mixed juice samples
3.5 CONCLUSION
CHAPTER 4 JUICE RELATED WATER-SOLUBLE PECTIN CHARACTERISTICS AND BIOACCESSIBILITY OF BIOACTIVE COMPOUNDS IN OIL AND EMULSION INCORPORATED MIXED JUICEPROCESSED BY HIGH PRESSURE HOMOGENIZATION
4.1 INTRODUCTION
4.2 MATERIALS
4.3 METHODS
4.3.1 Mixed juice preparation
4.3.2 Mixed juice treated by high pressure homogenization
4.3.3 In vitro digestion
4.3.3.1 Incorporation of oil and emulsion
4.3.3.2 Simulated mouth, stomach and intestinal digestion
4.3.4 Particle size distribution and particle diameters
4.3.5 Zeta potential analysis
4.3.6 Confocal microscopy analysis
4.3.7 Pectin analysis
4.3.7.1 Isolation of alcohol-insoluble residue
4.3.7.2 Fractionation of water-soluble pectin
4.3.7.3 Determination of galactunonic acid content
4.3.7.4 Determination of degree of methylesterification
4.3.7.5 Neutral sugar analysis
4.3.7.6 Determination of molecular weight
4.3.8 Determination of viscosity
4.3.9 Determination of total carotenoid content
4.3.10 Extraction of polyphenols and determination of total polyphenol content
4.3.11 Bioaccessibility of carotenoids and polyphenols
4.3.12 Statistical analysis
4.4 RESULTS AND DISCUSSION
4.4.1 Particle size distribution and particle diameters
4.4.2 Zeta potential
4.4.3 Microstructure and appearance of oil and emulsion particles
4.4.4 Water-soluble pectin characteristics of high pressure homogenized mixed juicesand viscosity of small intestinal digesta
4.4.5 Total carotenoid bioaccessibility
4.4.6 Total polyphenol bioaccessibility
4.4.7 Relationship of total carotenoid bioaccessibility with particle properties andwater-soluble pectin characteristics
4.4.7.1 Relationship between total carotenoid bioaccessibility and mean particlediameters (D[4,3] and D[3,2])
4.4.7.2 Relationship between total carotenoid bioaccessibility and zeta potential
4.4.7.3 Relationship between total carotenoid bioaccessibility and water-soluble pectincharacteristics
4.4.8 Relationship between total polyphenol bioaccessibility and water-soluble pectinproperties
4.5 CONCLUSION
CHAPTER 5 IMPACT OF HIGH PRESSURE HOMOGENIZATION ON WATER-SOLUBLE PECTIN CHARACTERISTICS AND BIOACCESSIBILITYOF BIOACTIVE COMPOUNDS OF MIXED JUICE
5.1 INTRODUCTION
5.2 MATERIALS
5.3 METHODS
5.3.1 Mixed juice preparation and treatment by high pressure homogenization
5.3.2 Pectin analysis in high pressure homogenized mixed juice
5.3.2.1 Isolation of alcohol-insoluble residue and fractionation of water-soluble pectin
5.3.2.2 Determination of molecular weight
5.3.2.3 Determination of galacturonic acid content and degree of methylesterification
5.3.2.4 Neutral sugar analysis
5.3.3 Retention and bioaccessibility of carotenoids and polyphenols
5.3.3.1 In vitro digestion
5.3.3.1.1 Sample preparation
5.3.3.1.2 Simulated mouth, stomach and intestinal digestion
5.3.3.2 Description of digesta
5.3.3.2.1 Particle size distribution and particle diameters
5.3.3.2.2 Zeta potential analysis
5.3.3.2.3 Confocal microscopy analysis
5.3.3.2.4 Determination of total carotenoid content
5.3.3.2.5 Extraction of polyphenols and analysis of total polyphenol content
5.3.3.2.6 Bioaccessibility of carotenoids and polyphenols
5.3.4 Statistical analysis
5.4 RESULTS AND DISCUSSION
5.4.1 The water-soluble pectin characteristics of mixed juice
5.4.1.1 Molecular weight
5.4.1.2 Galacturonic acid content, degree of methylesterification, chain linearity andbranching
5.4.2 Analysis of small intestinal digesta
5.4.2.1 Particle size distribution and mean particle diameters
5.4.2.2 Zeta potential
5.4.2.3 Microstructure
5.4.3 Total carotenoid content and total carotenoid bioaccessibility
5.4.4 Total polyphenol bioaccessibility
5.4.5 Relationship of total carotenoid bioaccessibility with water-soluble pectincharacteristics
5.5 CONCLUSION
SUMMARY
1 CONCLUSION
2 RECOMMENDATIONS
BIBLIOGRAPHY
致謝 (ACKNOWLEDGEMENT)
作者簡(jiǎn)歷 (RESUME)
本文編號(hào):3267514
本文鏈接:http://sikaile.net/projectlw/qgylw/3267514.html
最近更新
教材專著