基于磷脂組裝體的生物膜及雜化生物材料的制備
發(fā)布時間:2021-03-16 12:26
細胞是已知生命體結構和功能的基本單元。其外部為細胞膜,內部含有細胞質和細胞器。在合成生物學中,人造細胞可用于模擬細胞的一種或多種基本功能。由于細胞的復雜性,人們只構建出具有某種特定功能的人造細胞,迄今還未構建出具有所有細胞功能的人造細胞。細胞中最重要的組成部分是生物膜,它決定著細胞的形狀、物質的轉運以及細胞內外信號的傳遞。針對目前細胞膜構建中存在的問題,本文開展了以下研究:1)利用面對面電極體系研究尺寸可控的巨型囊泡的電形成過程;2)電形成過程中電場方向對形成高曲面膜模型磷脂管的影響;3)利用調制電場制備和真核細胞結構類似的雙層磷脂囊泡;4)碳納米管和磷脂的結合形成生物相容的螺旋結構,作為未來用于先進藥物遞送的微型機器人。首先采用電形成的方法制備了巨型囊泡(GUVs)。利用等離子體表面處理的氧化銦錫電極,通過響應曲面法考察了不同因素(電壓、頻率和溫度)對囊泡尺寸的影響。同時探討了具有不同電性(中性、正電性和負電性)的磷脂對GUVs的形成及尺寸的影響。研究表明,GUVs可以在較寬的電壓、頻率和溫度下形成。但是不同的因素對GUVs尺寸的影響不一樣,在1-6V范圍內,GUVs直徑隨著電壓的升...
【文章來源】:哈爾濱工業(yè)大學黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:135 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the study
1.2 The hydrophobic effect of amphiphilic mo lecules
1.3 Introduction to self-assembly of phospholipids
1.3.1 Phospholipid self-assembly in aqueous solution
1.3.2 Phospholipid self-assembly on solid substrate
1.4 Methods for construction of phospholipid self-assembly
1.4.1 Construction of spherical phospholipid assembly
1.4.2 Construction of non spherical phospholipid assembly
1.4.3 Construction of multi vesicles assemblies
1.4.4 Construction of phospholipid self-assembly on solid substrate
1.5 Main research contents of this subject
Chapter 2. Materials and Methods
2.1 Main raw materials and reagents
2.2 Experimental instrument
2.3 Materials characterization
2.3.1 Phospholipid charachterization
2.3.2 Carbon nanotubes characterization
2.4 Experimental
2.4.1 Formation of GUVs assembly using electroformation methods
2.4.2 Electroformation of lipid tubes using film paralleling electric field
2.4.3 Electroformation of double vesicles using AM electric field
2.4.4 Preparation of phospholipid-CNTs hybrids
2.5 Characterization methods
2.5.1 Fluorescent microscopy test methods
2.5.2 Confocal laser scanning microscopy
2.5.3 Scanning electron microscopy
2.5.4 Diameter determination method
2.6 Mathematical methods and simulation tools
2.6.1 Design of experiments
2.6.2 COMSOL simulation
2.6.3 Solution of Laplace equation for AM electric field on semi spherical shell
Chapter 3. Self-assembly of giant vesicles with controlled size usingelectroformation
3.1 Introduction
3.2 Formation of GUVs at different electroformation parameters
3.2.1 Influence of Electroformation time on GUVs size and PolydispersityIndex
3.2.2 Electroformation of GUVs at different electric potentials
3.2.3 Electroformation of GUVs at different frequencies
3.2.4 Electroformation of GUVs at different temperatures
3.3 Matrix Design and models building
3.4 Models validation
3.5 Effect of individual parameters on the formation of GUVs
3.5.1 Effect of electric potential
3.5.2 Effect of frequency
3.5.3 Effect of temperature
3.5.4 Effect of phospholipid composition
3.6 Effect of interaction between parameters
3.6.1 Interaction between electrical potential-frequency
3.6.2 Interaction between temperature-frequency
3.6.3 Interaction between temperature-electric potential
3.7 Summary
Chapter 4. Self-assembly of tubular biomembrane and double vesicles usingelectroformation
4.1. Introduction
4.2 Electroformation of lipid microtubules
4.2.1 Description of the experimental device
4.2.2 Formation of phospholipid tubes
4.3 Parameters influence the formation of phospholipid tubules
4.3.1 Influence of electric field strength
4.3.2 Influence of electric field direction on the formation of tubes
4.4 Mechanism of lipid tubes formation
4.5 Vesicles electroformation under different wave function
4.6 Validation of the formation of double vesicles
4.7 Parameters influence the formation of doubles vesicles
4.7.1 Effect of critical time
4.7.2 Effect of modulated and carrier frequencies
4.7.3 Effect of amplitude depth
4.8 Mechanism of double vesicle formation
4.9 Theoretical aspect of domes elongation into tubes
4.9.1 Calculation of the pulling force under AM electric field
4.9.2 Calculation of the critical force under AM electric field
4.10 Summary
Chapter 5 Self-assembly of phospholipid-CNTs hybrids helical structures
5.1 Introduction
5.2 Size distribution of CNT
5.3 Self-assembly of neutral phospholipids on long CNTs
5.4 Self-assembly of charged phospholipid on CNTs
5.4.1 Self-assembly of charged phospholipid on short CNTs
5.4.2 Self-assembly of charged phospholipid on medium CNTs
5.4.3 Self-assembly of charged phospholipid on long CNTs
5.5 Formation mechanism of phospholipid@CNTs helical structures
5.6 Effect of phospholipid/CNTs mass ratio on the formation of springs
5.7 Summary
Conclusion
Innovative points of this thesis
Perspectives
References
List of publications
Acknowledgement
Resume
本文編號:3086035
【文章來源】:哈爾濱工業(yè)大學黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:135 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Background, objective and significance of the study
1.2 The hydrophobic effect of amphiphilic mo lecules
1.3 Introduction to self-assembly of phospholipids
1.3.1 Phospholipid self-assembly in aqueous solution
1.3.2 Phospholipid self-assembly on solid substrate
1.4 Methods for construction of phospholipid self-assembly
1.4.1 Construction of spherical phospholipid assembly
1.4.2 Construction of non spherical phospholipid assembly
1.4.3 Construction of multi vesicles assemblies
1.4.4 Construction of phospholipid self-assembly on solid substrate
1.5 Main research contents of this subject
Chapter 2. Materials and Methods
2.1 Main raw materials and reagents
2.2 Experimental instrument
2.3 Materials characterization
2.3.1 Phospholipid charachterization
2.3.2 Carbon nanotubes characterization
2.4 Experimental
2.4.1 Formation of GUVs assembly using electroformation methods
2.4.2 Electroformation of lipid tubes using film paralleling electric field
2.4.3 Electroformation of double vesicles using AM electric field
2.4.4 Preparation of phospholipid-CNTs hybrids
2.5 Characterization methods
2.5.1 Fluorescent microscopy test methods
2.5.2 Confocal laser scanning microscopy
2.5.3 Scanning electron microscopy
2.5.4 Diameter determination method
2.6 Mathematical methods and simulation tools
2.6.1 Design of experiments
2.6.2 COMSOL simulation
2.6.3 Solution of Laplace equation for AM electric field on semi spherical shell
Chapter 3. Self-assembly of giant vesicles with controlled size usingelectroformation
3.1 Introduction
3.2 Formation of GUVs at different electroformation parameters
3.2.1 Influence of Electroformation time on GUVs size and PolydispersityIndex
3.2.2 Electroformation of GUVs at different electric potentials
3.2.3 Electroformation of GUVs at different frequencies
3.2.4 Electroformation of GUVs at different temperatures
3.3 Matrix Design and models building
3.4 Models validation
3.5 Effect of individual parameters on the formation of GUVs
3.5.1 Effect of electric potential
3.5.2 Effect of frequency
3.5.3 Effect of temperature
3.5.4 Effect of phospholipid composition
3.6 Effect of interaction between parameters
3.6.1 Interaction between electrical potential-frequency
3.6.2 Interaction between temperature-frequency
3.6.3 Interaction between temperature-electric potential
3.7 Summary
Chapter 4. Self-assembly of tubular biomembrane and double vesicles usingelectroformation
4.1. Introduction
4.2 Electroformation of lipid microtubules
4.2.1 Description of the experimental device
4.2.2 Formation of phospholipid tubes
4.3 Parameters influence the formation of phospholipid tubules
4.3.1 Influence of electric field strength
4.3.2 Influence of electric field direction on the formation of tubes
4.4 Mechanism of lipid tubes formation
4.5 Vesicles electroformation under different wave function
4.6 Validation of the formation of double vesicles
4.7 Parameters influence the formation of doubles vesicles
4.7.1 Effect of critical time
4.7.2 Effect of modulated and carrier frequencies
4.7.3 Effect of amplitude depth
4.8 Mechanism of double vesicle formation
4.9 Theoretical aspect of domes elongation into tubes
4.9.1 Calculation of the pulling force under AM electric field
4.9.2 Calculation of the critical force under AM electric field
4.10 Summary
Chapter 5 Self-assembly of phospholipid-CNTs hybrids helical structures
5.1 Introduction
5.2 Size distribution of CNT
5.3 Self-assembly of neutral phospholipids on long CNTs
5.4 Self-assembly of charged phospholipid on CNTs
5.4.1 Self-assembly of charged phospholipid on short CNTs
5.4.2 Self-assembly of charged phospholipid on medium CNTs
5.4.3 Self-assembly of charged phospholipid on long CNTs
5.5 Formation mechanism of phospholipid@CNTs helical structures
5.6 Effect of phospholipid/CNTs mass ratio on the formation of springs
5.7 Summary
Conclusion
Innovative points of this thesis
Perspectives
References
List of publications
Acknowledgement
Resume
本文編號:3086035
本文鏈接:http://sikaile.net/projectlw/hxgylw/3086035.html
最近更新
教材專著