大豆蛋白水解產(chǎn)物對冰淇淋和稀奶油結(jié)構(gòu)及性質(zhì)的影響
發(fā)布時間:2021-03-06 06:43
大豆分離蛋白作為一種植物源蛋白,由于具有有益健康、成本低、來源豐富以及功能性等特點,因此,近年來在食品工業(yè)中受到廣泛關(guān)注。大豆蛋白被認為可以替代食品體系中如冰淇淋和鮮奶油中的牛奶蛋白。大豆蛋白主要由兩部分組成:大豆球蛋白(11s)和伴大豆球蛋白(7s),二者總量占大豆種子貯藏蛋白的70%。11S是由酸性亞基和堿性亞基通過二硫鍵組成的六聚體,分子量為300-380 kDa。7S是α亞基(67 kDa),1個αˊ(71 kDa)和β(50 kDa)通過疏水作用和氫鍵形成的三聚體。加工條件及亞基比例對大豆蛋白乳化性能存在一定影響。天然大豆分離蛋白由于分子量較大,結(jié)構(gòu)完整,油水界面擴散速度較慢,分子柔性較差,所以表現(xiàn)出較差的油水界面性能。而在工業(yè)大豆分離蛋白(CSPI)生產(chǎn)過程中,熱處理使其溶解度下降,產(chǎn)生了一定比例的不溶性蛋白。大豆分離蛋白可以通過酶解獲得更優(yōu)良的乳化性能。為了確定蛋白結(jié)構(gòu)組成與性質(zhì)的關(guān)系,在特定條件下,利用胃蛋白酶和木瓜蛋白酶對大豆分離蛋白進行水解來獲得不同多肽譜的水解產(chǎn)物。與天然大豆分離蛋白(NSPI)相比,CSPI的電泳圖顯示:β-伴大豆球蛋白的β-亞基和大豆球蛋白的堿...
【文章來源】:江南大學(xué)江蘇省 211工程院校 教育部直屬院校
【文章頁數(shù)】:133 頁
【學(xué)位級別】:博士
【文章目錄】:
Acknowledgements
Abstract
摘要
LIST OF ABBREVIATION
Chapter1 Introduction
1.1 Overview of Study
1.2 Literature Review
1.2.1 Overview of Soy protein
1.2.2 Soy Protein Isolate Processing
1.2.3 Commercial soy protein isolates
1.2.4 Soy protein functionalities
1.3 Soy protein isolates enzymatic modification
1.3.1 Pepsin
1.3.2 Papain
1.3.3 Alcalase
1.4 Whippable Dairy emulsions
1.4.1 Overview typical emulsion and whippable dairy emulsion
1.4.2 Small molecule emulsifier and protein competitive displacement
1.4.3 Ice cream
1.4.4 Whipping cream
1.4.5 Soy protein application in whippable emulsions
Reference
Chapter2 Isolation and Characterization of Soy Protein Isolate and its hydrolysates by Pepsin and Papain
2.1 Introduction
2.2 Method and Materials
2.2.1 Materials
2.2.2 Preparation of soy protein hydrolysates
2.2.3 Determination of the degree of hydrolysis(DH)
2.2.4 Protein content determination
2.2.5 Molecular weight distribution by HPLC
2.2.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis(SDS–PAGE)
2.2.7 Zeta-potential analysis
2.2.8 Rheological measurement
2.2.9 Interfacial shear rheology measurements
2.2.10 Protein Solubility and pH
2.2.11 ESI and EAI
2.2.12 Particle size distribution
2.2.13 Statistical analysis
2.3 Results and Discussion
2.3.1 Protein content determination
2.3.2 Degree of Hydrolysis
2.3.3 Molecules weight distribution of soy protein and its hydrolysates
2.3.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
2.3.5 Solubility and pH
2.3.6 Zeta-potential determination
2.3.7 Rheological measurement
2.3.8 EAI and ESI
2.3.9 Particle size distribution
2.4 Conclusion
Reference
Chapter3 Impact of soy proteins,hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability
3.1 Introduction
3.2 Materials and Method
3.2.1 Materials
3.2.2 Surface tension
3.2.3 Interfacial shear rheology measurements
3.2.4 Emulsion preparation
3.2.5 Particle Size distribution
3.2.6 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.2.7 Adsorbed protein analysis
3.2.8 Statistical Analysis
3.3 Results and Discussion
3.3.1 Equilibrium surface tension
3.3.2 Interfacial Rheology
3.3.3 Characteristics of emulsions
3.3.4 Oil droplet size in the emulsion
3.3.5 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.4 Conclusion
Reference
Chapter4 Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Preparation and characterization of soy protein isolate and its hydrolysates
4.2.3 Formulation of ice cream and processing
4.2.4 Rheological properties
4.2.5 Particle size distribution
4.2.6 Adsorbed protein fraction determination
4.2.7 Melt-down properties of ice cream
4.2.8 Confocal laser scanning microscopy(CLSM)
4.2.9 Statistical Analysis
4.3 Results and Discussion
4.3.1 Composition and properties of soy protein isolate and its hydrolysate
4.3.2 Rheological properties of ice cream mixes
4.3.3 Meltdown rate
4.3.4 Particle Size Distribution
4.3.5 Adsorbed protein fraction and composition
4.3.6 Confocal Laser scanning microscopy(CLSM)
4.4 Conclusion
References
Chapter5 Effects of soy proteins and hydrolysates on fat globule coalescence and whipping properties of low-fat whipped cream
5.1 Introduction
5.2 Materials and methods
5.2.1 Materials
5.2.2 The formulation of whipping cream and processing
5.2.3 Composition of soy protein and its hydrolysates
5.2.4 Particle Size distribution
5.2.5 Overrun
5.2.6 Measurement of partial coalescence of fat
5.2.7 Serum drainage
5.2.8 Measurement of rheological behaviour of whipped cream
5.2.9 Analysis of textural properties
5.2.10 Statistics Analysis
5.3 Result and discussion
5.3.1 Composition of Soy protein isolate and its hydrolysates
5.3.2 Particle size distribution of fresh emulsion and whipped cream
5.3.3 Overrun of whipped cream
5.3.4 Measurement of partial coalescence of fat
5.3.5 Stability of whipped cream
5.3.6 Rheological behaviour of whipped cream
5.3.7 Texture of whipped cream
5.4 Conclusion
Reference
Main conclusions and prospects
Main conclusions
Prospects
Thesis innovation
Appendix.List of Published Paper duing Ph.D Study in Jiangnan University
【參考文獻】:
期刊論文
[1]不同熱處理大豆分離蛋白凝膠凍藏特性[J]. 陳振家,施小迪,杜昱蒙,姚美伊,郭順堂. 農(nóng)業(yè)工程學(xué)報. 2016(11)
[2]PVAc乳膠/改性大豆分離蛋白共混膠黏劑的制備及性能[J]. 曾念,謝建軍,丁出,劉軍霞. 化工進展. 2014(12)
本文編號:3066619
【文章來源】:江南大學(xué)江蘇省 211工程院校 教育部直屬院校
【文章頁數(shù)】:133 頁
【學(xué)位級別】:博士
【文章目錄】:
Acknowledgements
Abstract
摘要
LIST OF ABBREVIATION
Chapter1 Introduction
1.1 Overview of Study
1.2 Literature Review
1.2.1 Overview of Soy protein
1.2.2 Soy Protein Isolate Processing
1.2.3 Commercial soy protein isolates
1.2.4 Soy protein functionalities
1.3 Soy protein isolates enzymatic modification
1.3.1 Pepsin
1.3.2 Papain
1.3.3 Alcalase
1.4 Whippable Dairy emulsions
1.4.1 Overview typical emulsion and whippable dairy emulsion
1.4.2 Small molecule emulsifier and protein competitive displacement
1.4.3 Ice cream
1.4.4 Whipping cream
1.4.5 Soy protein application in whippable emulsions
Reference
Chapter2 Isolation and Characterization of Soy Protein Isolate and its hydrolysates by Pepsin and Papain
2.1 Introduction
2.2 Method and Materials
2.2.1 Materials
2.2.2 Preparation of soy protein hydrolysates
2.2.3 Determination of the degree of hydrolysis(DH)
2.2.4 Protein content determination
2.2.5 Molecular weight distribution by HPLC
2.2.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis(SDS–PAGE)
2.2.7 Zeta-potential analysis
2.2.8 Rheological measurement
2.2.9 Interfacial shear rheology measurements
2.2.10 Protein Solubility and pH
2.2.11 ESI and EAI
2.2.12 Particle size distribution
2.2.13 Statistical analysis
2.3 Results and Discussion
2.3.1 Protein content determination
2.3.2 Degree of Hydrolysis
2.3.3 Molecules weight distribution of soy protein and its hydrolysates
2.3.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
2.3.5 Solubility and pH
2.3.6 Zeta-potential determination
2.3.7 Rheological measurement
2.3.8 EAI and ESI
2.3.9 Particle size distribution
2.4 Conclusion
Reference
Chapter3 Impact of soy proteins,hydrolysates and monoglycerides at the oil/water interface in emulsions on interfacial properties and emulsion stability
3.1 Introduction
3.2 Materials and Method
3.2.1 Materials
3.2.2 Surface tension
3.2.3 Interfacial shear rheology measurements
3.2.4 Emulsion preparation
3.2.5 Particle Size distribution
3.2.6 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.2.7 Adsorbed protein analysis
3.2.8 Statistical Analysis
3.3 Results and Discussion
3.3.1 Equilibrium surface tension
3.3.2 Interfacial Rheology
3.3.3 Characteristics of emulsions
3.3.4 Oil droplet size in the emulsion
3.3.5 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE)
3.4 Conclusion
Reference
Chapter4 Effects of soy proteins and hydrolysates on fat globule coalescence and meltdown properties of ice cream
4.1 Introduction
4.2 Materials and methods
4.2.1 Materials
4.2.2 Preparation and characterization of soy protein isolate and its hydrolysates
4.2.3 Formulation of ice cream and processing
4.2.4 Rheological properties
4.2.5 Particle size distribution
4.2.6 Adsorbed protein fraction determination
4.2.7 Melt-down properties of ice cream
4.2.8 Confocal laser scanning microscopy(CLSM)
4.2.9 Statistical Analysis
4.3 Results and Discussion
4.3.1 Composition and properties of soy protein isolate and its hydrolysate
4.3.2 Rheological properties of ice cream mixes
4.3.3 Meltdown rate
4.3.4 Particle Size Distribution
4.3.5 Adsorbed protein fraction and composition
4.3.6 Confocal Laser scanning microscopy(CLSM)
4.4 Conclusion
References
Chapter5 Effects of soy proteins and hydrolysates on fat globule coalescence and whipping properties of low-fat whipped cream
5.1 Introduction
5.2 Materials and methods
5.2.1 Materials
5.2.2 The formulation of whipping cream and processing
5.2.3 Composition of soy protein and its hydrolysates
5.2.4 Particle Size distribution
5.2.5 Overrun
5.2.6 Measurement of partial coalescence of fat
5.2.7 Serum drainage
5.2.8 Measurement of rheological behaviour of whipped cream
5.2.9 Analysis of textural properties
5.2.10 Statistics Analysis
5.3 Result and discussion
5.3.1 Composition of Soy protein isolate and its hydrolysates
5.3.2 Particle size distribution of fresh emulsion and whipped cream
5.3.3 Overrun of whipped cream
5.3.4 Measurement of partial coalescence of fat
5.3.5 Stability of whipped cream
5.3.6 Rheological behaviour of whipped cream
5.3.7 Texture of whipped cream
5.4 Conclusion
Reference
Main conclusions and prospects
Main conclusions
Prospects
Thesis innovation
Appendix.List of Published Paper duing Ph.D Study in Jiangnan University
【參考文獻】:
期刊論文
[1]不同熱處理大豆分離蛋白凝膠凍藏特性[J]. 陳振家,施小迪,杜昱蒙,姚美伊,郭順堂. 農(nóng)業(yè)工程學(xué)報. 2016(11)
[2]PVAc乳膠/改性大豆分離蛋白共混膠黏劑的制備及性能[J]. 曾念,謝建軍,丁出,劉軍霞. 化工進展. 2014(12)
本文編號:3066619
本文鏈接:http://sikaile.net/projectlw/hxgylw/3066619.html
最近更新
教材專著