印度梨形孢對天寶香蕉耐受高溫脅迫生理生化與分子機(jī)理分析
發(fā)布時(shí)間:2021-06-09 19:55
香蕉(Musa acuminata)是世界上重要的糧食作物之一。香蕉屬于熱帶作物,最適種植溫度條件為24℃35℃,在熱帶和亞熱帶氣候地區(qū)廣泛種植。由于全球氣候的變化,香蕉遭受許多非生物脅迫,如高溫脅迫,當(dāng)溫度高于35℃時(shí),香蕉的生長和發(fā)育受到嚴(yán)重影響。內(nèi)生根真菌印度梨形孢(Piriformospora indica,P.indica)與叢枝菌根真菌(Abuscular Mycorrhizal Fungi,AMF)相似,可提高植物對礦質(zhì)元素的吸收能力,促進(jìn)植物的生長和發(fā)育,能增強(qiáng)其對生物和非生物脅迫的耐受性。然而,關(guān)于香蕉接種內(nèi)生真菌后高溫脅迫響應(yīng)的葉片生理生化和分子機(jī)制知之甚少。本研究以福建地區(qū)主栽品種“天寶”香蕉為材料,研究接種內(nèi)生菌P.indica后香蕉熱脅迫下的生理生化變化、轉(zhuǎn)錄組分析和小RNA差異表達(dá)分析,以探討P.indica提高香蕉耐熱性的生理生化及分子機(jī)制,以期為進(jìn)一步利用有益內(nèi)生菌P.indica,以高溫綜合管理和化學(xué)防治的形式尋覓一種既有助于植物生長發(fā)育又能抵御高溫脅迫的可行性方法提供科學(xué)依據(jù)。本研究首先測定和比較了45℃高溫處理下0 h、3 h...
【文章來源】:福建農(nóng)林大學(xué)福建省
【文章頁數(shù)】:170 頁
【學(xué)位級別】:碩士
【文章目錄】:
List of abbreviations
摘要
Abstract
Chapter1 Introduction
1.1 Physiological and biochemical study of heat stress response in plants
1.2 Molecular biology of plant response to high temperature
1.3 Heat shock protein and heat shock transcription factor
1.4 Transcriptomics of plant high temperature stress response
1.5 Molecular biology of banana heat resistance
1.6 Research progress of mi RNA in heat stress
1.7 Introduction of Piriformospora indica
1.7.1 P.indica colonization
1.7.2 The effect of P.indica on plant growth and development
1.8 Significance and main contents of this study
1.8.1 The Significance of study
1.8.2 Impact of research
1.8.3 Aims and objectives
1.8.4 Research aims and objectives
Chapter2 Analysis of the influence of Piriformospora indica on growth and physiological changes of banana leaves during high-temperature stress
2.1 Materials and methods
2.1.1 Cultivation and preparation of P.indica
2.1.2 Plant materials and treatments
2.1.3 Estimation of enzymatic and non-enzymatic antioxidants activities and phytohormones contents essay
2.1.4 Statistical analysis
2.2 Results
2.2.1 Growth of“Tianbao”banana colonized with P.indica
2.2.2 Effect of P.indica on hydrogen peroxide(H2O2),malondialchehyche(MDA),and proline(Pro)activity in leaves under high temperature
2.2.3 Effects of P. indica on enzyme activities in the leaves under high temperature
2.2.4 Influence of P.indica on phytohormones(ABA,GA,IAA,JA and SA)contents in leaves under high temperature
2.3 Discussion
Chapter3 Transcriptomic analysis revealed genes affected by Piriformospora indica in banana under high temperature stress
3.1 Materials and methods
3.1.1 Cultivation of P.indica,plant growth and treatments
3.1.2 Determination of anthocyanin concentration
3.1.3 Total RNA extraction and c DNA library construction
3.1.4 Data analysis
3.1.5 Quantitative-reverse transcription PCR
3.2 Results
3.2.1 Analysis of transcriptome assembly results and sequencing quality evaluation
3.2.2 Differentially expressed genes responsive to the effects of P.indica on“Tianbao”banana leaves under high temperature
3.2.3 Analysis of functional enrichment of differentially expressed genes
3.2.4 Analysis of abundant or most represented pathways in the leaves“Tianbao”banana colonized with P.indica before and after high temperature stress
3.2.5 Analysis of transcription factors for differentially expressed genes in the leaves of banana colonized with P.indica under high temperature stress
3.2.6 Differential expression analysis of heat shock protein and eat shock transcription factor during high temperature stress in the leaves of banana colonized with P.indica
3.2.7 Accumulation of anthocyanin in the colonized“Tianbao”banana leaves under high temperature
3.2.8 P.indica is in symbiosis with mitogen-activated protein kinase and cell wall,wax metabolism under high-temperature stress response
3.2.9 Validation of differential expression genes by q RT-PCR
3.3 Discussion
3.3.1 Transcriptome sequencing analysis of banana heat stress
3.3.2 P.indica colonization alleviated the morphological and physiological changes of banana under high temperature stress
3.3.3 P.indica colonization influence the nutrient acquisition in banana leaf
3.3.4 Physiological mechanism for heat acclimation during high temperature stress in the leaf of banana colonized P.indica
3.3.5 Potential DEGs and pathways playing critical roles in high tempearature tolerance conferred by the leaves of banana colonized with P.indica
3.3.6 Candidate transcriptions factors for improving HS tolerance of banana leaf
3.3.7 P.indica as a regulator of genes involved in banana leaf mitogen-activated protein kinase,cell wall and wax metabolism under high temperature stress
Chapter4 High Temperature associated micro RNAs and their potential roles in mediating heat tolerance in the leaf of“Tianbao”banana colonized by Piriformospora indica
4.1 Materials and methods
4.1.1 Materials
4.1.2 Library construction and sequencing
4.1.3 Data processing and analysis
4.1.4 Analysis of differentially expressed mi RNAs and s RNAs
4.1.5 Differentially expressed mi RNAs,novel mi RNAs and their target genes verified by q RT-PCR
4.1.6 Quantitative Real Time PCR reactions
4.2 Results
4.2.1 small RNAs sequencing data classification and length distribution of the leaves of banana colonized with P.indica
4.2.2 Identification of known,novel mi RNA and s RNA differentially expressed in response to P.indica and high temperature treatments
4.2.3 Prediction and functional analysis of mi RNA target genes in leaves of banana colonized with P.indica under high temperature stress
4.2.4 Differential expression analysis of know and novel mi RNAs
4.2.5 Target prediction and functional annotation of the known and novel differentially expressed mi RNAs response to P.indica and high temperature stress
4.2.6 Gene Ontology(GO)and KEGG pathway classification analysis of know mi RNAs target genes
4.2.7 Quantitative analysis for the expression of mi RNAs and their target genes
4.3 Discussion
4.3.1 P.indica affected plant growth and development
4.3.2 Differentially abundant mi RNA target genes in the leaves of banana colonized with P.indica under high temperature and their biological functions
4.3.3 P.indica affected the abundance of mi RNAs regulating genes and transcription factors linked to high temperature stress tolerance
4.3.4 P.indica regulated mi RNA controlled transcription factors involved in the control of growth
Chapter5 Summary and future prospects
5.1 Conclusion
5.1.1 Physiological changes of the leaves of“Tianbao”banana colonization during high temperature stress
5.1.2 Transcriptome data supplemented banana leaf genetic information and screened a large number of genes related to banana leaf response to high temperature
5.1.3 Small RNA data provide insights into banana heat stress transcription levels
5.2 Point of innovation
5.3 Prospects
References
Published Papers during the Program
Acknowledgements
Additional Materials
【參考文獻(xiàn)】:
期刊論文
[1]Changes in gas exchange,root growth,and biomass accumulation of Platycladus orientalis seedlings colonized by Serendipita indica[J]. Chu Wu,Qiao Wei,Jing Deng,Wenying Zhang. Journal of Forestry Research. 2019(04)
[2]龍眼體胚發(fā)生早期miR166初級體的克隆與表達(dá)分析[J]. 張清林,蘇立遙,厲雪,張舒婷,徐小萍,陳曉慧,王培育,李蓉,張梓浩,陳裕坤,賴鐘雄,林玉玲. 園藝學(xué)報(bào). 2018(08)
[3]印度梨形孢對黑松幼苗生長量及其根系形態(tài)的動態(tài)影響[J]. 周曉瑩,梁玉,董智,李紅麗,張夢璇,韓秀峰,范小莉,房用. 山東大學(xué)學(xué)報(bào)(理學(xué)版). 2018(07)
[4]非編碼RNA研究概述[J]. 陳亮,單革. 科學(xué)通報(bào). 2017(27)
[5]Research progress in the heat resistance, toughening and filling modification of PLA[J]. Yong Yang,Lisheng Zhang,Zhu Xiong,Zhaobin Tang,Ruoyu Zhang,Jin Zhu. Science China(Chemistry). 2016(11)
[6]印度梨形孢(Piriformospora indica)與植物互作研究綜述[J]. 毛琳琳,朱志炎,何勇,田志宏. 安徽農(nóng)學(xué)通報(bào). 2016(11)
[7]印度梨形孢(Piriformospora indica)的生物學(xué)特性及對植物生長的互作效應(yīng)研究進(jìn)展[J]. 朱志炎,毛琳琳,何勇,楊亞珍,董社琴,葉開溫,田志宏. 長江大學(xué)學(xué)報(bào)(自科版). 2016(15)
[8]印度梨形孢對萵苣增產(chǎn)提質(zhì)效果的研究[J]. 楊亞珍,陳玉子,董社琴,朱建強(qiáng),張建民. 北方園藝. 2015(01)
[9]高溫逆境下植物葉片衰老機(jī)理研究進(jìn)展[J]. 楊小飛,郭房慶. 植物生理學(xué)報(bào). 2014(09)
[10]印度梨形孢誘導(dǎo)油菜抗旱性機(jī)理的初步研究[J]. 陳佑源,樓兵干,高其康,林福呈. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào). 2013(03)
碩士論文
[1]切花非洲菊苗期在高溫脅迫中的生理生化響應(yīng)和轉(zhuǎn)錄組分析[D]. 祝小云.浙江農(nóng)林大學(xué) 2016
[2]基于高通量測序的中國甜柿microRNAs鑒定及分析[D]. 羅玉潔.華中農(nóng)業(yè)大學(xué) 2014
[3]福建香蕉種質(zhì)資源試管保存及野生蕉ISSR與抗寒性分析[D]. 賴恭梯.福建農(nóng)林大學(xué) 2014
[4]印度梨形孢誘導(dǎo)小白菜抗病、促生、抗逆的作用及其機(jī)理的初步研究[D]. 孫超.浙江大學(xué) 2010
本文編號:3221214
【文章來源】:福建農(nóng)林大學(xué)福建省
【文章頁數(shù)】:170 頁
【學(xué)位級別】:碩士
【文章目錄】:
List of abbreviations
摘要
Abstract
Chapter1 Introduction
1.1 Physiological and biochemical study of heat stress response in plants
1.2 Molecular biology of plant response to high temperature
1.3 Heat shock protein and heat shock transcription factor
1.4 Transcriptomics of plant high temperature stress response
1.5 Molecular biology of banana heat resistance
1.6 Research progress of mi RNA in heat stress
1.7 Introduction of Piriformospora indica
1.7.1 P.indica colonization
1.7.2 The effect of P.indica on plant growth and development
1.8 Significance and main contents of this study
1.8.1 The Significance of study
1.8.2 Impact of research
1.8.3 Aims and objectives
1.8.4 Research aims and objectives
Chapter2 Analysis of the influence of Piriformospora indica on growth and physiological changes of banana leaves during high-temperature stress
2.1 Materials and methods
2.1.1 Cultivation and preparation of P.indica
2.1.2 Plant materials and treatments
2.1.3 Estimation of enzymatic and non-enzymatic antioxidants activities and phytohormones contents essay
2.1.4 Statistical analysis
2.2 Results
2.2.1 Growth of“Tianbao”banana colonized with P.indica
2.2.2 Effect of P.indica on hydrogen peroxide(H2O2),malondialchehyche(MDA),and proline(Pro)activity in leaves under high temperature
2.2.3 Effects of P. indica on enzyme activities in the leaves under high temperature
2.2.4 Influence of P.indica on phytohormones(ABA,GA,IAA,JA and SA)contents in leaves under high temperature
2.3 Discussion
Chapter3 Transcriptomic analysis revealed genes affected by Piriformospora indica in banana under high temperature stress
3.1 Materials and methods
3.1.1 Cultivation of P.indica,plant growth and treatments
3.1.2 Determination of anthocyanin concentration
3.1.3 Total RNA extraction and c DNA library construction
3.1.4 Data analysis
3.1.5 Quantitative-reverse transcription PCR
3.2 Results
3.2.1 Analysis of transcriptome assembly results and sequencing quality evaluation
3.2.2 Differentially expressed genes responsive to the effects of P.indica on“Tianbao”banana leaves under high temperature
3.2.3 Analysis of functional enrichment of differentially expressed genes
3.2.4 Analysis of abundant or most represented pathways in the leaves“Tianbao”banana colonized with P.indica before and after high temperature stress
3.2.5 Analysis of transcription factors for differentially expressed genes in the leaves of banana colonized with P.indica under high temperature stress
3.2.6 Differential expression analysis of heat shock protein and eat shock transcription factor during high temperature stress in the leaves of banana colonized with P.indica
3.2.7 Accumulation of anthocyanin in the colonized“Tianbao”banana leaves under high temperature
3.2.8 P.indica is in symbiosis with mitogen-activated protein kinase and cell wall,wax metabolism under high-temperature stress response
3.2.9 Validation of differential expression genes by q RT-PCR
3.3 Discussion
3.3.1 Transcriptome sequencing analysis of banana heat stress
3.3.2 P.indica colonization alleviated the morphological and physiological changes of banana under high temperature stress
3.3.3 P.indica colonization influence the nutrient acquisition in banana leaf
3.3.4 Physiological mechanism for heat acclimation during high temperature stress in the leaf of banana colonized P.indica
3.3.5 Potential DEGs and pathways playing critical roles in high tempearature tolerance conferred by the leaves of banana colonized with P.indica
3.3.6 Candidate transcriptions factors for improving HS tolerance of banana leaf
3.3.7 P.indica as a regulator of genes involved in banana leaf mitogen-activated protein kinase,cell wall and wax metabolism under high temperature stress
Chapter4 High Temperature associated micro RNAs and their potential roles in mediating heat tolerance in the leaf of“Tianbao”banana colonized by Piriformospora indica
4.1 Materials and methods
4.1.1 Materials
4.1.2 Library construction and sequencing
4.1.3 Data processing and analysis
4.1.4 Analysis of differentially expressed mi RNAs and s RNAs
4.1.5 Differentially expressed mi RNAs,novel mi RNAs and their target genes verified by q RT-PCR
4.1.6 Quantitative Real Time PCR reactions
4.2 Results
4.2.1 small RNAs sequencing data classification and length distribution of the leaves of banana colonized with P.indica
4.2.2 Identification of known,novel mi RNA and s RNA differentially expressed in response to P.indica and high temperature treatments
4.2.3 Prediction and functional analysis of mi RNA target genes in leaves of banana colonized with P.indica under high temperature stress
4.2.4 Differential expression analysis of know and novel mi RNAs
4.2.5 Target prediction and functional annotation of the known and novel differentially expressed mi RNAs response to P.indica and high temperature stress
4.2.6 Gene Ontology(GO)and KEGG pathway classification analysis of know mi RNAs target genes
4.2.7 Quantitative analysis for the expression of mi RNAs and their target genes
4.3 Discussion
4.3.1 P.indica affected plant growth and development
4.3.2 Differentially abundant mi RNA target genes in the leaves of banana colonized with P.indica under high temperature and their biological functions
4.3.3 P.indica affected the abundance of mi RNAs regulating genes and transcription factors linked to high temperature stress tolerance
4.3.4 P.indica regulated mi RNA controlled transcription factors involved in the control of growth
Chapter5 Summary and future prospects
5.1 Conclusion
5.1.1 Physiological changes of the leaves of“Tianbao”banana colonization during high temperature stress
5.1.2 Transcriptome data supplemented banana leaf genetic information and screened a large number of genes related to banana leaf response to high temperature
5.1.3 Small RNA data provide insights into banana heat stress transcription levels
5.2 Point of innovation
5.3 Prospects
References
Published Papers during the Program
Acknowledgements
Additional Materials
【參考文獻(xiàn)】:
期刊論文
[1]Changes in gas exchange,root growth,and biomass accumulation of Platycladus orientalis seedlings colonized by Serendipita indica[J]. Chu Wu,Qiao Wei,Jing Deng,Wenying Zhang. Journal of Forestry Research. 2019(04)
[2]龍眼體胚發(fā)生早期miR166初級體的克隆與表達(dá)分析[J]. 張清林,蘇立遙,厲雪,張舒婷,徐小萍,陳曉慧,王培育,李蓉,張梓浩,陳裕坤,賴鐘雄,林玉玲. 園藝學(xué)報(bào). 2018(08)
[3]印度梨形孢對黑松幼苗生長量及其根系形態(tài)的動態(tài)影響[J]. 周曉瑩,梁玉,董智,李紅麗,張夢璇,韓秀峰,范小莉,房用. 山東大學(xué)學(xué)報(bào)(理學(xué)版). 2018(07)
[4]非編碼RNA研究概述[J]. 陳亮,單革. 科學(xué)通報(bào). 2017(27)
[5]Research progress in the heat resistance, toughening and filling modification of PLA[J]. Yong Yang,Lisheng Zhang,Zhu Xiong,Zhaobin Tang,Ruoyu Zhang,Jin Zhu. Science China(Chemistry). 2016(11)
[6]印度梨形孢(Piriformospora indica)與植物互作研究綜述[J]. 毛琳琳,朱志炎,何勇,田志宏. 安徽農(nóng)學(xué)通報(bào). 2016(11)
[7]印度梨形孢(Piriformospora indica)的生物學(xué)特性及對植物生長的互作效應(yīng)研究進(jìn)展[J]. 朱志炎,毛琳琳,何勇,楊亞珍,董社琴,葉開溫,田志宏. 長江大學(xué)學(xué)報(bào)(自科版). 2016(15)
[8]印度梨形孢對萵苣增產(chǎn)提質(zhì)效果的研究[J]. 楊亞珍,陳玉子,董社琴,朱建強(qiáng),張建民. 北方園藝. 2015(01)
[9]高溫逆境下植物葉片衰老機(jī)理研究進(jìn)展[J]. 楊小飛,郭房慶. 植物生理學(xué)報(bào). 2014(09)
[10]印度梨形孢誘導(dǎo)油菜抗旱性機(jī)理的初步研究[J]. 陳佑源,樓兵干,高其康,林福呈. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào). 2013(03)
碩士論文
[1]切花非洲菊苗期在高溫脅迫中的生理生化響應(yīng)和轉(zhuǎn)錄組分析[D]. 祝小云.浙江農(nóng)林大學(xué) 2016
[2]基于高通量測序的中國甜柿microRNAs鑒定及分析[D]. 羅玉潔.華中農(nóng)業(yè)大學(xué) 2014
[3]福建香蕉種質(zhì)資源試管保存及野生蕉ISSR與抗寒性分析[D]. 賴恭梯.福建農(nóng)林大學(xué) 2014
[4]印度梨形孢誘導(dǎo)小白菜抗病、促生、抗逆的作用及其機(jī)理的初步研究[D]. 孫超.浙江大學(xué) 2010
本文編號:3221214
本文鏈接:http://sikaile.net/nykjlw/yylw/3221214.html
最近更新
教材專著